2 research outputs found

    Pneumococcal pneumonia and carriage in Africa before and after introduction of pneumococcal conjugate vaccines, 2000-2019:protocol for systematic review

    Get PDF
    INTRODUCTION:Africa harbours a high burden of pneumococcal disease, with associated high mortality rates. Despite 34 countries introducing the pneumococcal conjugate vaccine, which reduces the risk of pneumococcal carriage (a prerequisite for disease) of some of the most pathogenic pneumococcal serotypes, it remains uncertain whether they will achieve the sustained direct or indirect protection necessary to reduce pneumococcal carriage to levels sufficient to interrupt transmission and disease. We will therefore summarise the available data on the impact of the pneumococcal conjugate vaccine in reducing vaccine serotype carriage and pneumococcal pneumonia in Africa between 2000 and 2019. METHODS AND ANALYSIS:Using a predetermined search strategy, we will conduct a comprehensive search of PubMed, MEDLINE database, the Excerpta Medica Database, the ISI Web of Science (Science Citation Index), Scopus and the African Index Medicus to identify published studies reporting the prevalence of Streptococcus pneumoniae carriage (vaccine type and non-vaccine type), incidence rates of pneumococcal pneumonia and mortality among children, adults and HIV-infected (all-ages) pre-pneumococcal conjugate vaccine (PCV) and post-PCV introduction (published between 1st January 2000 and 31st December 2019) in African countries that have introduced PCVs (PCV7/PCV10/PCV13) in their routine national immunisation programme. The studies retained and data extracted will be assessed for bias using prevalidated tools and checklists. Heterogeneity across studies will be assessed using the χ2 test on Cochrane Q statistic. A random effect meta-analysis will be used to estimate the overall prevalence of pneumococcal carriage and incidence of pneumococcal pneumonia across studies with similar characteristics. Results will be reported in compliance with the Meta-Analysis Of Observational Studies in Epidemiology guidelines. The protocol has been prepared in accordance to the 2015 guidelines on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. ETHICS AND DISSEMINATION:This systematic review will not require ethical approval as we will be using already published data. The final manuscript will be submitted for publication in a peer-reviewed journal and presented at conferences. PROSPERO REGISTRATION NUMBER:CRD42019130976

    SARS-CoV-2 exposure in Malawian blood donors: an analysis of seroprevalence and variant dynamics between January 2020 and July 2021

    Get PDF
    Background: By August 2021, the COVID-19 pandemic has been less severe in sub-Saharan Africa than elsewhere. In Malawi, there have been three subsequent epidemic waves. We therefore aimed to describe the dynamics of SARS-CoV-2 exposure in Malawi. Methods: We measured the seroprevalence of anti-SARS-CoV-2 antibodies amongst randomly selected blood transfusion donor sera in Malawi from January 2020 to July 2021 using a cross-sectional study design. In a subset, we also assessed in vitro neutralisation against the original variant (D614G WT) and the Beta variant. Results: A total of 5085 samples were selected from the blood donor database, of which 4075 (80.1%) were aged 20–49 years. Of the total, 1401 were seropositive. After adjustment for assay characteristics and applying population weights, seropositivity reached peaks in October 2020 (18.5%) and May 2021 (64.9%) reflecting the first two epidemic waves. Unlike the first wave, both urban and rural areas had high seropositivity in the second wave, Balaka (rural, 66.2%, April 2021), Blantyre (urban, 75.6%, May 2021), Lilongwe (urban, 78.0%, May 2021), and Mzuzu (urban, 74.6%, April 2021). Blantyre and Mzuzu also show indications of the start of a third pandemic wave with seroprevalence picking up again in July 2021 (Blantyre, 81.7%; Mzuzu, 71.0%). More first wave sera showed in vitro neutralisation activity against the original variant (78% [7/9]) than the beta variant (22% [2/9]), while more second wave sera showed neutralisation activity against the beta variant (75% [12/16]) than the original variant (63% [10/16]). Conclusion: The findings confirm extensive SARS-CoV-2 exposure in Malawi over two epidemic waves with likely poor cross-protection to reinfection from the first on the second wave. The dynamics of SARS-CoV-2 exposure will therefore need to be taken into account in the formulation of the COVID-19 vaccination policy in Malawi and across the region. Future studies should use an adequate sample size for the assessment of neutralisation activity across a panel of SARS-CoV-2 variants of concern/interest to estimate community immunity
    corecore