5 research outputs found

    Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures

    Get PDF
    To make supercapattery devices feasible, there is an urgent need to find electrode materials that exhibit a hybrid mechanism of energy storage. Herein, we provide a first report on the capability of lithium manganese sulfates to be used as supercapattery materials at elevated temperatures. Two compositions are studied: monoclinic Li2_2Mn(SO4_4)2_2 and orthorhombic Li2_2Mn2_2(SO4_4)3_3, which are prepared by a freeze-drying method followed by heat treatment at 500 °C. The electrochemical performance of sulfate electrodes is evaluated in lithium-ion cells using two types of electrolytes: conventional carbonate-based electrolytes and ionic liquid IL ones. The electrochemical measurements are carried out in the temperature range of 20–60 °C. The stability of sulfate electrodes after cycling is monitored by in-situ Raman spectroscopy and ex-situ XRD and TEM analysis. It is found that sulfate salts store Li+ by a hybrid mechanism that depends on the kind of electrolyte used and the recording temperature. Li2_2Mn(SO4_4)2_2 outperforms Li2_2Mn2_2(SO4_4)3_3 and displays excellent electrochemical properties at elevated temperatures: at 60 °C, the energy density reaches 280 Wh/kg at a power density of 11,000 W/kg. During cell cycling, there is a transformation of the Li-rich salt, Li2_2Mn(SO4_4)2_2, into a defective Li-poor one, Li2_2Mn2_2(SO4_4)3_3, which appears to be responsible for the improved storage properties. The data reveals that Li2_2Mn(SO4_4)2_2 is a prospective candidate for supercapacitor electrode materials at elevated temperatures

    Metal Substitution versus Oxygen-Storage Modifier to Regulate the Oxygen Redox Reactions in Sodium-Deficient Three-Layered Oxides

    No full text
    Sodium-deficient nickel-manganese oxides with three-layered stacking exhibit the unique property of dual nickel-oxygen redox activity, which allows them to achieve enormous specific capacity. The challenge is how to stabilize the oxygen redox activity during cycling. This study demonstrates that oxygen redox activity of P3-Na2/3Ni1/2Mn1/2O2 during both Na+ and Li+ intercalation can be regulated by the design of oxide architecture that includes target metal substituents (such as Mg2+ and Ti4+) and oxygen storage modifiers (such as CeO2). Although the substitution for nickel with Ti4+ amplifies the oxygen redox activity and intensifies the interaction of oxides with NaPF6- and LiPF6-based electrolytes, the Mg2+ substituents influence mainly the nickel redox activity and suppress the deposition of electrolyte decomposed products (such as MnF2). The CeO2-modifier has a much stronger effect on the oxygen redox activity than that of metal substituents; thus, the highest specific capacity is attained. In addition, the CeO2-modifier tunes the electrode–electrode interaction by eliminating the deposition of MnF2. As a result, the Mg-substituted oxide modified with CeO2 displays high capacity, excellent cycling stability and exceptional rate capability when used as cathode in Na-ion cell, while in Li-ion cell, the best performance is achieved for Ti-substituted oxide modified by CeO2

    Metal Substitution versus Oxygen-Storage Modifier to Regulate the Oxygen Redox Reactions in Sodium-Deficient Three-Layered Oxides

    No full text
    Sodium-deficient nickel-manganese oxides with three-layered stacking exhibit the unique property of dual nickel-oxygen redox activity, which allows them to achieve enormous specific capacity. The challenge is how to stabilize the oxygen redox activity during cycling. This study demonstrates that oxygen redox activity of P3-Na2/3Ni1/2Mn1/2O2 during both Na+ and Li+ intercalation can be regulated by the design of oxide architecture that includes target metal substituents (such as Mg2+ and Ti4+) and oxygen storage modifiers (such as CeO2). Although the substitution for nickel with Ti4+ amplifies the oxygen redox activity and intensifies the interaction of oxides with NaPF6- and LiPF6-based electrolytes, the Mg2+ substituents influence mainly the nickel redox activity and suppress the deposition of electrolyte decomposed products (such as MnF2). The CeO2-modifier has a much stronger effect on the oxygen redox activity than that of metal substituents; thus, the highest specific capacity is attained. In addition, the CeO2-modifier tunes the electrode–electrode interaction by eliminating the deposition of MnF2. As a result, the Mg-substituted oxide modified with CeO2 displays high capacity, excellent cycling stability and exceptional rate capability when used as cathode in Na-ion cell, while in Li-ion cell, the best performance is achieved for Ti-substituted oxide modified by CeO2

    The Beneficial Impact of Mineral Content in Spent-Coffee-Ground-Derived Hard Carbon on Sodium-Ion Storage

    No full text
    The key technological implementation of sodium-ion batteries is converting biomass-derived hard carbons into effective anode materials. This becomes feasible if appropriate knowledge of the relations between the structure of carbonized biomass products, the mineral ash content in them, and Na storage properties is gained. In this study, we examine the simultaneous impact of the ash phase composition and carbon structure on the Na storage properties of hard carbons derived from spent coffee grounds (SCGs). The carbon structure is modified using the pre-carbonization of SCGs at 750 °C, followed by annealing at 1100 °C in an Ar atmosphere. Two variants of the pre-carbonization procedure are adopted: the pre-carbonization of SCGs in a fixed bed and CO2 flow. For the sake of comparison, the pre-carbonized products are chemically treated to remove the ash content. The Na storage performance of SCG-derived carbons is examined in model two and three Na-ion cells. It was found that ash-containing carbons outperformed the ash-free analogs with respect to cycling stability, Coulombic efficiency, and rate capability. The enhanced performance is explained in terms of the modification of the carbon surface by ash phases (mainly albite) and its interaction with the electrolyte, which is monitored by ex situ XPS

    High-Performance Layered Oxides for Sodium-Ion Batteries Achieved through Combined Aluminum Substitution and Surface Treatment

    No full text
    Layered sodium transition metal oxides belong to electrode materials for sodium-ion batteries that combine, in a better way, high performance with environmental requirements. However, their cycling stability is still far from desirable. Herein, we demonstrate a rational approach to control the cycling stability of sodium-deficient nickel manganese oxides, Na2/3Ni1/2Mn1/2O2, with two- and three-layer stacking through Al substitution and Al2O3 treatment. Layered Na2/3Ni1/2Mn1/2O2 oxide displays a limited ability to accommodate aluminum in its structure (i.e., up to 8 at. %). The substitution of Ni ions with electrochemically inactive Al3+ ions and keeping the amount of Mn ions in Na2/3Ni1/2−xAlxMn1/2O2 leads to the stabilization of the two-layer stacking and favors the participation of lattice oxygen in the electrochemical reaction in addition to Ni ions. This results in an increase in the specific capacity of the Al-substituted oxides. Furthermore, the kinetics of the cationic migration between layers occurring during oxide cycling was manipulated by oxide morphology. The best cycling stability is observed for Na2/3Ni0.42Al0.08Mn1/2O2 having a column-like morphology of stacked plate-like particles along the common faces. The treatment of the layered oxides with Al2O3 mitigates the Mn dissolution reaction during electrode cycling in the NaPF6-based electrolyte, thus contributing to a high cycling stability
    corecore