11 research outputs found

    Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs

    Full text link
    Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap‐prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude‐intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2‐weeks following noise‐exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20–60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus‐specific changes were particularly prominent in hippocampal synapse‐rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus‐specific changes occurred in synapse‐rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/1/hipo23058.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150542/2/hipo23058_am.pd

    Perfluorinated ion-exchange membranes

    No full text

    Pharmacotherapy of Tinnitus

    Full text link
    Tinnitus is a common symptom for which there is in most cases no causal therapy. The search for an improvement of tinnitus through pharmacological interventions has a long tradition. The observation that tinnitus can be transiently suppressed by the use of lidocaine has shown that the symptom is susceptible to pharmacotherapy. So far, however, no medication has been found for either acute or chronic subjective tinnitus that reliably leads to a long-term reduction or even complete disappearance of the symptom for the majority of tinnitus sufferers. Nevertheless, in everyday clinical life, drugs are frequently used, usually off-label, to relieve tinnitus or tinnitus-associated symptoms (e.g. sleep disturbance, depression, anxiety disorder or hearing loss). This chapter shows the different approaches to acute and chronic subjective tinnitus by means of pharmacotherapeutic interventions. Furthermore, this review reports on the scientific studies carried out in this area in recent years and explains the difficulties in finding a suitable medication for most forms of tinnitus. In addition, it reports on the pharmacotherapeutic options for objective tinnitus and describes the development of tinnitus as a side effect of certain drugs. Finally, possible target structures are mentioned, which should possibly be addressed in pharmacological studies in the near future

    Nanotechnology for environmentally sustainable electromobility

    No full text
    ABSTRACT: Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility

    Consumption of seaweeds and the human brain

    No full text
    corecore