12 research outputs found

    Reply from the authors

    No full text

    Autologous and homologous transplantation of bovine spermatogonial stem cells

    No full text
    The aim of this study was to develop a method for spermatogonial stem cell transplantation into the bovine testis. Five-month-old Holstein-Friesian calves were used and half of the calves were hemicastrated to allow autologous transplantation and the other half were used for homologous transplantation. Approximately 20 g of each testis was used for cell isolation. On average 106 cells per gram of testis containing about 70% type A spermatogonia were isolated. The cells were frozen in liquid nitrogen until transplantation. Testes were irradiated locally with 10-14 Gy of X-rays to deplete endogenous spermatogenesis. At 2 months after irradiation, cells (approximately 10 x 10(6) were injected into the rete testis through a long injection needle (18 gauge), using ultrasonography and an ultrasound contrast solution. At 2.5 months after transplantation, calves were castrated and samples of testes were taken for histological examination. After 2.5 months in the irradiated non-transplanted control testes, only 45% of the tubules contained type A spermatogonia. However, after autologous spermatogonial transplantation, >80% of the tubule cross-sections contained type A spermatogonia. In addition, only 20% of the tubules of the control testes contained spermatocytes and, except for a few tubules (5%) with round spermatids, no more advanced germ cells were found. After autologous spermatogonial transplantation, about 60% of the tubules contained spermatocytes; 30% contained spermatids and in about 15% of tubules spermatozoa were found. No improvement in spermatogonial repopulation was found after homologous transplantation. The results of this study demonstrate, for the first time, successful autologous transplantation of bovine spermatogonial stem cells resulting in a complete regeneration of spermatogenesis

    Autologous and homologous transplantation of bovine spermatogonial stem cells

    No full text
    The aim of this study was to develop a method for spermatogonial stem cell transplantation into the bovine testis. Five-month-old Holstein-Friesian calves were used and half of the calves were hemicastrated to allow autologous transplantation and the other half were used for homologous transplantation. Approximately 20 g of each testis was used for cell isolation. On average 106 cells per gram of testis containing about 70% type A spermatogonia were isolated. The cells were frozen in liquid nitrogen until transplantation. Testes were irradiated locally with 10-14 Gy of X-rays to deplete endogenous spermatogenesis. At 2 months after irradiation, cells (approximately 10 x 10(6) were injected into the rete testis through a long injection needle (18 gauge), using ultrasonography and an ultrasound contrast solution. At 2.5 months after transplantation, calves were castrated and samples of testes were taken for histological examination. After 2.5 months in the irradiated non-transplanted control testes, only 45% of the tubules contained type A spermatogonia. However, after autologous spermatogonial transplantation, >80% of the tubule cross-sections contained type A spermatogonia. In addition, only 20% of the tubules of the control testes contained spermatocytes and, except for a few tubules (5%) with round spermatids, no more advanced germ cells were found. After autologous spermatogonial transplantation, about 60% of the tubules contained spermatocytes; 30% contained spermatids and in about 15% of tubules spermatozoa were found. No improvement in spermatogonial repopulation was found after homologous transplantation. The results of this study demonstrate, for the first time, successful autologous transplantation of bovine spermatogonial stem cells resulting in a complete regeneration of spermatogenesis

    The functional polymorphism Ala258Ser in the innate receptor gene ficolin-2 in the donor predicts improved renal transplant outcome

    No full text
    BACKGROUND: Innate immunity plays a role in controlling adaptive immune responses.METHODS: We investigated the clinical relevance of single nucleotide polymorphisms in 22 genes encoding innate, secreted, and signaling pattern recognition receptors in a total of 520 donor-recipient pairs of postmortem, human leukocyte antigen-DR-compatible kidney transplantations. Associations with rejection incidence were tested in an a priori randomized training set and validation set. RESULTS: Polymorphisms in TLR-3 (rs3775296) in the recipients and in Ficolin-2 (rs7851696; Ala258Ser) and C1qR1 (rs7492) in the donors showed the strongest association with severe rejection. In multivariate analysis, presence of the Ficolin-2 Ala258Ser variant in the donor predicted lower incidence of severe rejection (odds ratio=0.3; 95% confidence interval, 0.1-0.9; P=0.024) and of graft loss (hazard ratio=0.5; 95% confidence interval, 0.2-1.0; P=0.046) independently of clinical risk factors. Ficolin-2 messenger RNA expression was detected in pretransplantation biopsies from 69 donor grafts. Serum and tissue Ficolin-2 levels were unaffected by genotype. Ficolin-2 protein, which bound to dying cells, was detected in donor kidneys in a passenger leukocyte-like pattern. Indeed, monocytes, monocyte-derived macrophages, and peripheral blood mononuclear cells expressed Ficolin-2. Donor grafts with the Ficolin-2 Ala258Ser variant contained significantly elevated expression of interleukin 6, having ascribed cytoprotective effects. It has been described that Ala258Ser leads to increased binding capacity of Ficolin-2 to N-acetylglucosamine. CONCLUSIONS:Presence of the Ficolin-2 Ala258Ser polymorphism in the donor independently predicts improved graft outcome. Based on mechanistic data, we propose that this functional polymorphism leads to more efficient handling of injured cells by phagocytozing cells, resulting in decreased intragraft exposure to danger signals and dampened alloimmune responses.</p
    corecore