8 research outputs found

    Comparative immunogenecity of Foot and Mouth Disease Virus antigens in FMD-haemorrhagic septicaemia combined vaccine and FMD vaccine alone in buffalo calves

    No full text
    259-264Humoral immune response was evaluated by monitoring the serum antibody titres and virus specific IgM titres against Foot and Mouth Disease (FMD) virus antigens in serum samples obtained from different groups of calves inoculated with combined vaccine or FMD vaccine alone, on 0, 7, 14,21, 28,42 and 56 days post-vaccination (DPV). The cellular immune response was monitored by MTT based lymphoproliferation in peripheral blood mononuclear cell cultures. Higher liquid phase blocking (LPB) ELISA antibody titres were observed in calves receiving combined vaccine as compared to calves immunized with FMD vaccine alone with the peak titres in both the groups obtained on 21 days post-vaccination. However, the virus specific IgM titres were significantly higher in group of calves inoculated with combined vaccine than FMD vaccine alone. The lymphoproliferative responses against FMDV types O, A22 and Asia 1 in the groups receiving combined vaccine and FMD vaccine alone started increasing gradually after day 14 and reached peak levels on 28 DPV followed by a gradual decline subsequently. The group receiving combined vaccine showed higher proliferative responses on in vitro stimulation with FMD virus type O, whereas, with FMD virus type Asia 1, the responses were significantly higher on 14 and 21 DPV as compared to the group immunized with FMD vaccine alone. However, in the group receiving combined vaccine, the responses on in vitro stimulation with FMD virus type A22 were significantly higher than FMD vaccine alone group on all DPV except on 42 DPV

    Not Available

    No full text
    Not AvailableIn India, among various diseases that limit livestock production, Foot and Mouth Disease (FMD) stands first and affects thousands of animals every year. The estimation of loss due to FMD is of paramount importance for designing appropriate control plans. The economic impact studies on various livestock diseases including FMD are very minimal and hence this study assessed the economic loss due to FMD in cattle and buffaloes in few states and overall loss in the country. The total loss estimated comprise of milk yield reduction, unavailability of draught power, distress sale, treatment cost, mortality and opportunity cost of labour based on primary survey undertaken in 10 states and one Union territory. The results revealed that there was variation in loss levels between species and among the study states due to variation in disease incidence and severity levels, productive capacity of the animals, animal health infrastructure in the respective states, etc. The total estimated loss due to FMD in cattle and buffalo was INR 20,897 crore during 2013–14 with wide variation in magnitude across the states studied. The study provided empirical evidence of loss due to FMD in cattle and buffaloes in few states and overall loss in the country.Not Availabl

    Zoonotic cases of camelpox infection in India.

    No full text
    This study reports the first conclusive evidence of zoonotic camelpox virus (CMLV) infection in humans associated with outbreaks in dromedarian camels (Camelus dromedaries) in northwest region of India during 2009. CMLV infection is usually restricted to camels and causes localised skin lesions but occasionally leads to generalised form of disease. However, the present outbreak involved camel handlers and attendants with clinical manifestations such as papules, vesicles, ulceration and finally scabs over fingers and hands. In camels, the pock-like lesions were distributed over the hairless parts of the body. On the basis of clinical and epidemiological features coupled with serological tests and molecular characterization of the causative agent, CMLV zoonosis was confirmed in three human cases. Clinical samples such as skin scabs/swabs and blood collected from affected animals and humans were analysed initially, for the presence of CMLV-specific antigen and antibodies by counter immunoelectrophoresis (CIE); serum neutralization test (SNT); plaque-reduction neutralization test (PRNT) and indirect immunoperoxidase test which was later confirmed by amplification of CMLV-specific ankyrin repeat protein (C18L) gene. Virus isolation was successful only from samples collected from camels. Further, sequence analyses based on three full-length envelope protein genes (A27L, H3L and D8L) revealed 95.2-99.8% and 93.1-99.3% homology with other Orthopoxviruses at nucleotide and amino acid levels, respectively. Phylogram of the three genes revealed a close relationship of CMLV with Variola virus (VARV). Considering the emerging and re-emerging nature of the virus, its genetic relatedness to VARV, zoonotic potential and productivity losses in camels; the control measures are imperative in curtailing economic and public health impact of the disease. This is the first instance of laboratory confirmed camelpox zoonosis in India

    Virus-like particles as a vaccine delivery system: myths and facts.

    No full text
    Vaccines against viral disease have traditionally relied on attenuated virus strains or inactivation of infectious virus. Subunit vaccines based on viral proteins expressed in heterologous systems have been effective for some pathogens, but have often suffered from poor immunogenicity due to incorrect protein folding or modification. In this chapter we focus on a specific class of viral subunit vaccine that mimics the overall structure of virus particles and thus preserves the native antigenic conformation of the immunogenic proteins. These virus-like particles (VLPs) have been produced for a wide range of taxonomically and structurally distinct viruses, and have unique advantages in terms of safety and immunogenicity over previous approaches. With new VLP vaccines for papillomavirus beginning to reach the market place we argue that this technology has now 'come-of-age' and must be considered a viable vaccine strategy
    corecore