2 research outputs found
箱に番号が付いた新しい箱玉系について
九州大学応用力学研究所研究集会報告 No.25AO-S2 「非線形波動研究の拡がり」Reports of RIAM Symposium No.25AO-S2 The breadth and depth of nonlinear wave scienceProceedings of a symposium held at Chikushi Campus, Kyushu Universiy, Kasuga, Fukuoka, Japan, October 31 - November 2, 2013離散ハングリー戸田方程式の超離散版は玉に番号が付いた箱玉系の運動方程式として知られている.本報告では,離散ハングリー戸田方程式のある変形版を導入し,その超離散化を通じて箱を番号付けで区別した新しい箱玉系を導く.また,離散ハングリー戸田方程式の変形版の保存量を求め,その超離散化によって新しい箱玉系の保存量を明らかにする.保存量を求める過程において,離散ハングリーロトカ・ボルテラ系と離散ハングリー戸田方程式の変形版を結ぶベックルント変換も示す.さらに,玉に番号が付いた箱玉系と新しい箱玉系の関係についても述べる
Conserved quantities of the integrable discrete hungry systems
Published: July 2015.In this paper, conserved quantities of the discrete hungry Lotka-Volterra (dhLV) system are derived. Our approach is based on the Lax representation of the dhLV system, which expresses the time evolution of the dhLV system as a similarity transformation on a certain square matrix. Thus, coefficients of the characteristic polynomial of this matrix constitute conserved quantities of the dhLV system. These coefficients are calculated explicitly through a recurrence relation among the characteristic polynomials of its leading principal submatrices. The conserved quantities of the discrete hungry Toda (dhToda) equation is also derived with the help of the Bäcklund transformation between the dhLV system and the dhToda equation