3 research outputs found

    Upper critical magnetic field in NbRe and NbReN micrometric strips

    No full text
    Non-centrosymmetric superconductors have recently received significant interest due to their intriguing physical properties such as multigap and nodal superconductivity, helical vortex states, as well as non-trivial topological effects. Moreover, large values of the upper critical magnetic field have been reported in these materials. Here, we focus on the study of the temperature dependence of the perpendicular magnetic field of NbRe and NbReN films patterned in micrometric strips. The experimental data are studied within the Werthamer-Helfand-Hohenberg theory, which considers both orbital and Zeeman pair breaking. The analysis of the results shows different behavior for the two materials with a Pauli contribution relevant only in the case of NbReN

    Demonstration of High-Impedance Superconducting NbRe Dayem Bridges

    No full text
    Here, we demonstrate superconducting Dayem-bridge weak-links made of different stoichiometric compositions of NbRe. Our devices possess a relatively high critical temperature, normal-state resistance, and kinetic inductance. In particular, the high kinetic inductance makes this material a good alternative to more conventional niobium-based superconductors (e.g., NbN or NbTiN) for the realization of superinductors and high-quality factor resonators, whereas the high normal-state resistance yields a large output voltage in superconducting switches and logic elements realized upon this compound. Moreover, out-of-plane critical magnetic fields exceeding 2 T ensure that possible applications requiring high magnetic fields can also be envisaged. Altogether, these features make this material appealing for a number of applications in the framework of quantum technologies
    corecore