59 research outputs found

    Graphene-enabled electrically switchable radar-absorbing surfaces

    Get PDF
    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. © 2015 Macmillan Publishers Limited. All rights reserved

    Controlling phase of microwaves with active graphene surfaces

    Get PDF
    In this letter, we report a method to control the reflection phase of microwaves using electrically tunable graphene devices. The device consists of mutually gated large-area graphene layers placed at a quarter-wave distance from a metallic surface. This device structure yields electrically tunable resonance absorbance and step-like phase shift around the resonance frequency when the impedance of graphene matches with the free space impedance. Electrostatic control of charge density on graphene yields unprecedented ability to control both intensity (>50 dB) and phase (∼π) of the reflected electromagnetic waves with voltage. Furthermore, using the asymmetry of the doping at opposite polarity of the bias voltages, we showed bidirectional phase control with the applied voltage. © 2017 Author(s)

    Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    Get PDF
    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ∼400 cm 2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them

    Probing molecular interactions on carbon nanotube surfaces using surface plasmon resonance sensors

    Get PDF
    In this work, we present a method to probe molecular interactions on single-walled carbon nanotube (SWNT) surfaces using a surface plasmon sensor. SWNT networks were synthesized by chemical vapor deposition and transfer-printed on gold surfaces. We studied the excitation of surface plasmon-polaritons on nanotube coated gold surfaces with sub-monolayer, monolayer, and multilayer surface coverage. Integrating the fabricated sensor with a microfluidic device, we were able to obtain binding dynamics of a bovine serum albumin (BSA) protein on SWNT networks with various tube densities. The results reveal the kinetic parameters for nonspecific binding of BSA on SWNT coated surfaces having various tube densities. © 2012 American Institute of Physics

    Graphene-gold supercapacitor as a voltage-controlled saturable absorber for femtosecond pulse generation

    Get PDF
    We report, for the first time to our knowledge, a voltage-controlled graphene-gold supercapacitor saturable absorber, as a modulator with adjustable insertion loss for low-gain mode-locked lasers. Nearly transform-limited, 80-fs pulses were generated near 1240 nm. © OSA 2015

    Graphene as a Reversible and Spectrally Selective Fluorescence Quencher

    Get PDF
    We report reversible and spectrally selective fluorescence quenching of quantum dots (QDs) placed in close proximity to graphene. Controlling interband electronic transitions of graphene via electrostatic gating greatly modifies the fluorescence lifetime and intensity of nearby QDs via blocking of the nonradiative energy transfer between QDs and graphene. Using ionic liquid (IL) based electrolyte gating, we are able to control Fermi energy of graphene in the order of 1 eV, which yields electrically controllable fluorescence quenching of QDs in the visible spectrum. Indeed, our technique enables us to perform voltage controllable spectral selectivity among quantum dots at different emission wavelengths. We anticipate that our technique will provide tunable light-matter interaction and energy transfer that could yield hybrid QDs-graphene based optoelectronic devices with novel functionalities, and additionally, may be useful as a spectroscopic ruler, for example, in bioimaging and biomolecular sensing. We propose that graphene can be used as an electrically tunable and wavelength selective fluorescence quencher. � 2016 The Author(s)

    Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation

    Get PDF
    We report, for the first time to the best of our knowledge, use of a graphene-gold supercapacitor as a voltage controlled fast saturable absorber for femtosecond pulse generation. The unique design involving only one graphene electrode lowers the insertion loss of the device, in comparison with capacitor designs with two graphene electrodes. Furthermore, use of the high-dielectric electrolyte allows reversible, adjustable control of the absorption level up to the visible region with low bias voltages of only a few volts (0-2 V). The fast saturable absorber action of the graphene-gold supercapacitor was demonstrated inside a multipass-cavity Cr:forsterite laser to generate nearly transform-limited, sub-100 fs pulses at a pulse repetition rate of 4.51 MHz at 1.24 μm. © 2016 Optical Society of America

    Broadband terahertz modulators using self-gated graphene capacitors

    Get PDF
    We demonstrate a terahertz intensity modulator using a graphene supercapacitor which consists of two large-area graphene electrodes and an electrolyte medium. The mutual electrolyte gating between the graphene electrodes provides very efficient electrostatic doping with Fermi energies of 1 eV and a charge density of 8 × 1013 cm-2. We show that the graphene supercapacitor yields more than 50% modulation between 0.1 and 1.4 THz with operation voltages less than 3 V. The low insertion losses, high modulation depth over a broad spectrum, and the simplicity of the device structure are the key attributes of graphene supercapacitors for THz applications. © 2015 Optical Society of America

    Femtosecond pulse generation from a Ti3+: Sapphire laser near 800 nm with voltage reconfigurable graphene saturable absorbers

    Get PDF
    We experimentally show that a voltage-controlled graphene-gold supercapacitor saturable absorber (VCG-gold-SA) can be operated as a fast saturable absorber with adjustable linear absorption at wavelengths as low as 795 nm. This was made possible by the use of a novel supercapacitor architecture, consisting of a high-dielectric electrolyte sandwiched between a graphene and a gold electrode. The high-dielectric electrolyte allowed continuous, reversible adjustment of the Fermi level and, hence, the optical loss of the VCG-gold-SA up to the visible wavelengths at low bias voltages of the order of a few volts (0-2 V). The fast saturable absorber action of the VCG-gold-SA and the bias-dependent reduction of its loss were successfully demonstrated inside a femtosecond Ti3+:sapphire laser operating near 800 nm. Dispersion compensation was employed by using dispersion control mirrors and a prism pair. At a bias voltage of 1.2 V, the laser operated with improved power performance in comparison with that at zero bias, and the VCG-gold-SA initiated the generation of nearly transform-limited pulses as short as 48 fs at a pulse repetition rate of 131.7 MHz near 830 nm. To the best of our knowledge, this represents the shortest wavelength where a VCG-gold-SA has been employed as a mode locker with adjustable loss. © 2017 Optical Society of America

    Broadband THz modulators based on multilayer graphene on PVC

    Get PDF
    In this study we present the direct terahertz time-domain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V. We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The observed modulation bandwidth in terahertz frequencies appears to be instrument limited. © 2016 IEEE
    corecore