1,603 research outputs found

    Atmospheric neutrino flux at INO, South Pole and Pyh\"asalmi

    Get PDF
    We present the calculation of the atmospheric neutrino fluxes for the neutrino experiments proposed at INO, South Pole and Pyh\"asalmi. Neutrino fluxes have been obtained using ATMNC, a simulation code for cosmic ray in the atmosphere. Even using the same primary flux model and the interaction model, the calculated atmospheric neutrino fluxes are different for the different sites due to the geomagnetic field. The prediction of these fluxes in the present paper would be quite useful in the experimental analysis.Comment: 12Pages,9Fig

    Uncertainties in Atmospheric Neutrino Fluxes

    Get PDF
    An evaluation of the principal uncertainties in the computation of neutrino fluxes produced in cosmic ray showers in the atmosphere is presented. The neutrino flux predictions are needed for comparison with experiment to perform neutrino oscillation studies. The paper concentrates on the main limitations which are due to hadron production uncertainties. It also treats primary cosmic ray flux uncertainties, which are at a lower level. The absolute neutrino fluxes are found to have errors of around 15% in the neutrino energy region important for contained events underground. Large cancellations of these errors occur when ratios of fluxes are considered, in particular, the νμ/νˉμ\nu_\mu/\bar{\nu}_\mu ratio below Eν=1E_\nu=1 GeV, the (νμ+νˉμ)/(νe+νˉe)(\nu_\mu+\bar{\nu}_\mu)/(\nu_e+\bar{\nu}_e) ratio below Eν=10E_\nu=10 GeV and the up/down ratios above Eν=1E_\nu=1 GeV are at the 1% level. A detailed breakdown of the origin of these errors and cancellations is presented.Comment: 14 pages, 22 postscript figures, written in Revte

    Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    Get PDF
    Using the ``modified DPMJET-III'' model explained in the previous paper, we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 \cite{HKKM2004}, but the usage of the ``virtual detector'' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of KK-production in the interaction model is estimated by modifying FLUKA'97 and Fritiof 7.02 so that they also reproduce the atmospheric muon flux data correctly, and the calculation of the atmospheric neutrino flux with those modified interaction models. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

    Passive Sole Constraining Method to Stabilize 3D Passive Dynamic Walking

    Get PDF
    Inspired by the function of a toe and a lateral arch of a human foot, we propose a method to stabilize the biped walk by attaching unactuated toes and lateral arches. The toes and lateral arches work as adaptive braking of sagittal and lateral directions. They touch on the ground at the angle where the biped exceedingly inclines. After touching on the floor, the center of rotation changes at the landing positions. This change causes the reduction of the exceeding angular velocities toward sagittal and lateral directions. By setting appropriate heights of the toe and lateral arch during the swing phase, the walking robot is expected to be stabilized. To analyze the effects of the toe, we derived equations of motions and the state transition functions for a simplified 3D passive dynamic walker with toes. We clarified the potential stabilizing effect of the method from numerical simulations and preliminary experiments by a real-world biped with toes. Note that the proper setting of heights and the verification of the effect of lateral arches are on the way
    corecore