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Abstract— Inspired by the function of a toe and a lateral arch of 

a human foot, we propose a method to stabilize the biped walk 

by attaching unactuated toes and lateral arches. The toes and 

lateral arches work as adaptive braking of sagittal and lateral 

directions. They touch on the ground at the angle where the 

biped exceedingly inclines. After touching on the floor, the 

center of rotation changes at the landing positions. This change 

causes the reduction of the exceeding angular velocities toward 

sagittal and lateral directions. By setting appropriate heights of 

the toe and lateral arch during the swing phase, the walking 

robot is expected to be stabilized. To analyze the effects of the 

toe, we derived equations of motions and the state transition 

functions for a simplified 3D passive dynamic walker with toes. 

We clarified the potential stabilizing effect of the method from 

numerical simulations and preliminary experiments by a real-

world biped with toes. Note that the proper setting of heights 

and the verification of the effect of lateral arches are on the way. 

Keywords-biped; walk; stability; foot; toe; passive dynamic 

walk; equations of motion 

I. INTRODUCTION

Walk stabilization of a biped robot is achieved mainly by 
controlling its posture and forces to apply on foot [1][2]. Floor 
reaction force control, which often referred to as ZMP based 
control, is a major method [1]. This method applies torques on 
ankles to move the ZMP inside the foot to maintain dynamical 
stability [2].  

However, controlling ankles on a stance leg means driving 
both upper and lower bodies at once, which requires powerful 
torque on it [3]. This is energy inefficient and increases the 
difficulty to design appropriate actuators which demand both 
high torque and compactness.  

Instead of 'driving' the supporting leg, we propose a 
method to control the angle, or the landing contact position, of 
the foot on the supporting leg [4][5]. This method is inspired 
by the function of a toe and a lateral arch of a human foot.  

Fig.1 shows the movements of a landing foot during the 
stance phase in a typical human walk [6][7]. In a sagittal plane 
(right), the leg first rotates around the heel. Then, the toe 
touches on the ground, and the leg begins rotating around it, 
which is slightly ahead of the heel. As we describe later, the 
change of the center of rotation effects as braking the forward 
movement.  

As we experience in daily life, when we walk down a slope, 
we put down our toe. By this, the change of the center of 

rotation occurs earlier than the walk on flat ground, which 
effects as putting on the brake at an earlier time to prevent fall 
and body inclination. The same mechanism will be seen in the 
lateral plane (Fig.1 left). The height of the lateral arch is 
controlled by the ankle. The center of rotation in the lateral 
plane changes after the lateral arch touches on the ground. 
This change also effects as braking the side movement to keep 
stability over sideways. 

Figure 1.  Change of rotation center by toe and lateral longitudinal 
arch of foot in human walk. Lateral rotation center change by lateral 

arch (left). Sagittal rotation center change by toe (right).  

Change of rotation center 

from heel to toe during 

stance phase

Sole constraining mechanism 
(toe) with height control. A 

servo motor changes the height 
of toe during swing phase.

Figure 2.  A small humanoid robot (KHR-3) attached with our sole 
constraining (toe) mechanism. The toe is driven by a servo motor 

which controls the height during swing phase. 
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This stability control method by the change of the center 
of rotation is easily realized on the foot of a bipedal robot [4]. 
Fig. 2 shows our experimental sagittal mechanism of changing 
the height of a toe. In this design, a motor changes the height 
of the toe during swing phase. Since the toe is driven by a high 
gear ratio, it keeps the height during the stance phase. The 
adjustable toe realizes the change of the center of rotation at a 
different point without using powerful torque on foot. Fig. 3 
is another realization of the toe and the lateral arch on a 
passive dynamic walker with knees. In this case, the heights 
of these constraints are chosen by hand to adapt to the slope. 
Usually, a passive dynamic 3D walker is unstable [8][9]. But 
the walker with these constraining devices exhibited high 
stability and able to continue walking for many steps. 

One of the essential points to be clarified is the amount of 
height of the toe and the side arches to acquire stability. These 
should be set according to the condition of a walk, such as a 
road inclination angle. A mathematical model of the bipedal 
walking with the change of rotation center should be needed 
to derive the control rules. However, there has been no such 
model described. 

This paper shows the dynamics model of a simplified 3D 
bipedal walk with the effect of the change of rotation center 
by the toe. We simulate the passive dynamic walk in this 
model. Since the stability of passive dynamic walk is known 
to be highly sensitive to its parameters such as initial 
conditions [10], it is an appropriate platform to discuss the 
effect of the toe. In our model, we will show that the effect of 
rotation around toe works to reduce the speed in the sagittal 
plane. We will also show that the model with the toe is more 
stable than the one without it under the environmental 
parameter changes. The reason is that the braking effect by toe 
rotation only occurs when the body inclines at a certain level 
(Fig. 4). In another word, the model automatically puts on the 
brake when it is too much inclining. 

 
 

This paper is organized as follows: First, we show the 
model of a simplified 3D biped with toe and lateral arch. 
Second, we derive the equations of motion and the equations 
of the transition of states by the stance-swing leg change and 
the toe grounding. Third, we show the results of the numerical 
simulations of our model and the model without a toe. The 
results of an actual 3D passive dynamic walk biped will be 
shown. 

Note that the lateral arch effect and the toe height (angle) 
derivation according to the slope inclination are underway and 
are not included in this report. 

 

II. 3D PASSIVE DYNAMIC BIPED MODEL WITH TOES   

 
 

 
 

Figure 3. A 3D passive dynamic walker with knees and the toe 

and lateral arch mechanisms on foot. Experiments by this walker 
are described in section 5. 

Figure 4. Change of the center of rotation before and after a toe 
collision (sagittal view). After the collision, a virtual link from 

hip to toe becomes a new stance leg. 

Figure 5. A simplified point-mass 3D passive dynamic biped 
model with toes. The hip axle keeps in parallel to the Oy axis. 



Fig. 5 shows the configuration of our model. It is based on 
Wisse and van der Linde's 'simplest passive walking model 
with lean-to-yaw coupling' [10]. This model assumes that the 
hip axle does not rotate around the yaw direction (around the 
'Oz' axis in Fig. 5). The difference with the Wisse's model is 
that our model has a 'toe' fixed at the point-foot to the 'Ox' 
direction.  

Fig. 5 (lower part) shows a projection of the model onto 
the sagittal plane slanting at 𝛼. The toe, which is indicated by 
a straight bold line, is affixed at the ankle at an angle 𝜇 which 
is specified by the leg length 𝑙, toe length 𝑙𝑓𝑥, and the length 

𝑙𝑠𝑥 from hip axle to the top of the toe. The stance leg rotates 
around the point leg (Fig. 4 left). Immediately after the toe 
touches the ground (i.e., the toe line lies on the floor), the 
stance leg rotates around the toe (Fig. 4 right).  

The dynamics of the system is represented by a set of 

generalized coordinates 𝑞 = [𝜃  𝜙  𝛼]T, which correspond to 
the stance leg hip joint angle, the swing leg hip joint angle, 
and the degree of sway in a lateral plane. The configuration 
parameters are {𝑙, 𝑘, 𝑙𝑓𝑥 , 𝑙𝑠𝑥 , 𝛾, 𝑚ℎ, 𝑚𝑓}, which correspond to 

the stance/swing leg length, half the width of the hip axle, the 
toe length, the length from hip axle to the toe, the slope 
inclination, the hip point mass, and the foot point mass (Fig. 
5).  Note that the foot point mass will be regarded as 
infinitely small during derivation of the equations of motion 
[10][11]. 
 

III. EQUATIONS OF MOTION AND TRANSITION RULES OF 

COLLISION 

A. Equations of motion between collision 

The equations of motion between collision of foot or toe 
is derived as the point-mass system [10]. 

First, the locations of the points of mass at stance foot, hip, 
and swing foot are written as  

 
𝑟1 = [0 0 0]𝑇, 
𝑟2 = [−𝑙 𝑠𝑖𝑛𝜃, −𝑘 𝑐𝑜𝑠𝛼 +  𝑙 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃, 𝑘 𝑠𝑖𝑛𝛼 +

 𝑙 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝜃]𝑇,  

𝑟3 =  [−𝑙 𝑠𝑖𝑛(𝜙 − 𝜃) + 𝑠𝑖𝑛𝜃, −2𝑘 𝑐𝑜𝑠𝛼 −  𝑙 (𝑐𝑜𝑠(𝜙 −

𝜃) −  𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝛼, 2𝑘 𝑠𝑖𝑛𝛼 −  𝑙(𝑐𝑜𝑠(𝜙 − 𝜃))𝑐𝑜𝑠𝛼]
𝑇
. (1) 

 
Second, The external force (gravitational force) applied to 

the stance foot, hip, and swing foot are represented as 
 
𝑓1 =  [0 0 0]𝑇, 𝑓2 =  [𝑚ℎ 𝑠𝑖𝑛𝛾, 0, −𝑚ℎ𝑐𝑜𝑠𝛾]𝑇, 

𝑓3 =  [𝑚𝑓𝑠𝑖𝑛𝛾, 0, −𝑚𝑓𝑐𝑜𝑠𝛾]
𝑇
. (2) 

 
From these, the generalized mass matrix M is given by 

 
 𝑀 =  𝑚𝑓𝐽1

𝑇  +  𝑚ℎ 𝐽2
𝑇  +  𝑚𝑓𝐽3

𝑇, (3)  

 
where 𝐽1 , 𝐽2  , and 𝐽3  are the Jacobians of 𝑟1 , 𝑟2  , and 𝑟3 
according to the generalized coordinates q. The generalized 
force 𝑄𝑒  is given by 

 

 𝑄𝑒 =  𝐽1 𝑓1  +  𝐽2 𝑓2  +  𝐽3 𝑓3.  (4) 
 
Also the inertia force 𝑄𝑣  is calculated as  
 
𝑄𝑣 =  −𝑚𝑓 𝐽1

𝑇 𝐽1�̇�   − 𝑚ℎ 𝐽2
𝑇 𝐽2 �̇�  − 𝑚𝑓 𝐽3

𝑇 𝐽3 �̇�. (5) 

 
Applying the principle of virtual work with these values 

leads to the equations of motion as  
 
𝑀�̈� = 𝑄𝑒 + 𝑄𝑣 .  (6) 
 
The explicit form of the equations of motion is shown in 

the Appendix.  
 

B. Transition rules of collision (1: toe collision)  

In a passive walking model, the angles and the angular 
velocities change after the collision of the heel and the 
switching of swing and stance legs. In contrast to the point-
foot model [11], our model with toe collides (1) at the toe of 
the stance leg and (2) at the heel of the swing leg. The 
transition rules of these collisions are derived as follows: 

First, the collision of toe occurs in advance to the collision 
of the heel. Fig. 6 shows the rotation of the stance leg before 
and after the toe collision. Note that, in the following 
descriptions, we use superscript '-' and '+' for the state 
variables before and after the collision. 

 

 
 
As in the previous works [10][11], we assume that the 

ground contact at heel and toe are complete inelastic collision 
and the angular momentum around the contact points will be 

Figure 6. Change of angles and angular velocities before and after the 
toe collision. 



reserved between collision [12]. From Fig. 6, the angular 
momentum around the toe before collision is calculated as  

 

𝐻𝑡𝑜𝑒
−  =  𝑚ℎ𝑙𝑠𝑥  𝑙 �̇�− 𝑐𝑜𝑠 𝜇, (7)  

 

where 𝑐𝑜𝑠 𝜇 =
𝑙2+ 𝑙𝑠𝑥

2 − 𝑙𝑓𝑥
2

2𝑙 𝑙𝑠𝑥
. The angular momentum around 

the toe after collision becomes 
 

 𝐻𝑡𝑜𝑒
+  =  𝑚ℎ 𝑙𝑠𝑥

2  �̇�+.  (8) 
 
𝐻𝑡𝑜𝑒

−  =  𝐻𝑡𝑜𝑒
+  leads to the new angular velocity after 

collision as 
 

 �̇�+  = �̇�−
𝑙2 + 𝑙𝑠𝑥

2  − 𝑙𝑓𝑥
2

2 𝑙𝑠𝑥
2 .  (9) 

 
By the relative relationships of new and old stance/swing 

legs, the angle of the new stance and swing leg becomes 
 
 𝜃+   = 𝜃− + 𝑎𝑟𝑐𝑐𝑜𝑠 𝜇, 
 𝜙+  = 𝜙− + 𝑎𝑟𝑐𝑐𝑜𝑠 𝜇.  (10) 
 

Note that the angular velocities �̇�  and �̇�  remain 
unchanged. 

C. Transition rules of collision (2: swing-stance leg 

exchange)  

Second, the collision of the swing leg heel occurs shortly 
after the change of the center of rotation of the stance leg (Fig. 
5). Fig. 7 shows the relationship of the swing and stance legs 
before and after the collision of the heel of the new stance leg. 
A major difference with the normal walker is that the angle of 
the new swing leg is different from the former stance leg. This 
is because the former stance leg is rotating around its toe, and 
the new swing leg swings its heel (Fig. 7). From the figure, 
the angular momentum around the heel of the new stance leg 
(point C) before collision is 

 

𝐻𝑐
− =  𝑚ℎ 𝑙𝑙𝑠𝑥𝑐𝑜𝑠 (𝜙− − 𝜇)�̇�−. (11) 

 
 The angular momentum of the new stance leg after 

collision is  
 

𝐻𝑐
+ =  𝑚ℎ 𝑙𝑠𝑥

2  �̇�−.  (12) 
 
By the preservation of the momentum 𝐻𝑐

− =  𝐻𝑐
+, the new 

angular velocity after collision is given as  
 

�̇�+ = �̇�− 𝑙

𝑙𝑠𝑥 
𝑐𝑜𝑠(𝜙− − 𝜇).  (13) 

 
Also, the angular momentums around the hip axle before 

and after the collision are written as  
 

𝐻𝐵
− =  0 and 𝐻𝐵

+ =  𝑚𝑓𝑙(�̇�+ + �̇�+ − �̇�+𝑐𝑜𝑠𝜙+). (14) 

 
 Assuming these to be equal, we derive the angular 

velocity of the new swing leg as 

 

 �̇�+ = �̇�+(1 −  𝑐𝑜𝑠𝜙+). (15) 
 
We assume that the angular velocity of the sway motion 𝛼  

will be kept before and after the collision [12]. 
These equations are used in the numerical simulations 

described in the next chapter. 
 

 
 

IV. NUMERICAL SIMULATIONS TO EVALUATE BRAKING 

AND STABILIZING EFFECT OF TOES  

To evaluate the effect of braking and stability-enhancing 
effect of introducing toe, we conducted numerical simulations. 
Simulations of walking several slope inclinations were 
conducted. Each simulation runs for two steps (one walking 
cycle).  

The configuration parameters of walker were set as 
follows:  

 
{𝑙: 1 [m], 𝑘: 0.5 [m], 𝑙𝑓𝑥: 0.2 [m], 𝑙𝑠𝑥: 1.011 [m], 
𝑚ℎ: 1 [kg], 𝑚𝑓: (infinitely small), gravitational force: 

9.8 [m/s]}. 
  
The initial conditions of movement were set as follows:  
 

{𝜃: 1/6𝜋 [rad], 𝜙: 1/3𝜋 [rad], 𝛼: 0 [rad], 
 �̇� : − 1.79 [rad/s], �̇� : − 1.79 [rad/s], �̇�: 1.1 [rad/s]}.  
 

Note that the initial angular velocities are chosen so that 
the model without toe that is walking on a flat floor will 
resume the same states after heel collision. (Details of 
derivation of the values are omitted in this paper.) 

Since the parameters are set for the flat ground walk (𝛾 =
0), the simulations running at the conditions of 𝛾 > 0 will 
result in unstable walking. By observing the difference of 
angles and the angular velocities between the initial state and 

Figure 7. Change of angles and angular velocities before (-) and after 
(+) heel collision. Stance and swing leg exchange occurs. A new 

swing leg will be the link between the hip axle and the heel. 



the final state of the simulation, we will evaluate the stability 
of the model.   

 
 

 
 

 
Fig. 8 and 9 show the results of simulations with and 

without toe at the slop inclination 𝛾 = 1.5 [deg]. The upper 
half of the Fig.8 shows the 3D stick diagrams by the 
simulation of the model without toes, and the lower half shows 
the diagrams of the model with toes.  

Both results exhibit the same stable walk during the first 
step. However, after the swing/stance leg change, the model 
without toe behaves unstable, whereas the model with toe 
keeps almost the same stable walk. 

The left hand of Fig. 9 shows the change of angles. The 
right-hand shows the change of angular velocities. The upper 
part is for the model without toes, and the lower part shows 
the model with toes. In the graphs of the model with toes, the 
stance and swing legs angle had changed at around 300 [ms]. 
This step-change is caused by the change of the rotation center 
of the stance leg from heel to toe. As seen in the right figure, 
the angular velocities of stance and swing legs exhibit the 
reduction of absolute value at the time of the rotation center 
switching.  

This reduction is the braking effect of the toe model. The 
effect occurs just after the toe touched on the ground (at 300 
[ms] in this simulation). By this, we will expect the toe as a 
brake that automatically works when the stance leg inclines 
too much. 

The angular velocities of the model without toe at the end 
of the simulation (mid of the second stride) showed a rapid 
increase, which means the model had fallen quickly. Instead, 
the model with toe achieves mostly the same profiles before 
and after the swing-stance leg exchange. It would be expected 
that the toe contributes to stabilizing the passive dynamic walk 
against the change of the environment. 

 

V. EXPERIMENTS BY REAL WORLD MODEL 

To examine the effect of the change of rotation center by 
the toe and lateral arch, we conducted experiments by using a 
real-world passive dynamic walker. The walker is shown in 
Fig. 3. Unlike the simulation model, the walker has knees and 
is attached with pins that work as toes and lateral arches (Fig.3 
right). The pink parts are the weights (0.45 [kg] each). The 
size of the walker is 300 [mm] height and 200 [mm] width. 
The foot shape consists of slightly rounding arch soles 
attached at both side edges.  

 

 
 
The walking experiments were conducted on a treadmill 

inclining at 5.5 [deg]. The heights of pins are tuned by hand 
to achieve the walker's stability as high as possible. Therefore, 

Figure 8. 3D stick diagrams of the numerical simulation of the model. 
The upper and lower diagrams correspond to the results of the model 

without and with toe. 

Figure 9. Angles and angular velocities of the numerical simulation of 
the model. The upper and lower diagrams correspond to the results of 

the model without and with toe. 

toe collision 

Figure 10. A sequence of pictures of the sagittal view of the real-
world passive dynamic biped shown in Fig. 3. The order is from upper 
left to lower right. 



the experiments only show the potential of the introduction of 
toes and lateral arches. 
 

 
 

VI. CONCLUSIONS 

We have proposed a stability enhancement method for a 
biped which uses unactuated 'toes' and 'lateral arches' on foot. 
Our idea was to use the braking effect by the change of 
rotation center caused by the toes and lateral arches. By 
appropriately pre-setting heights of toes and lateral arches, the 
braking effects take place during stance phase at the time 
when the stance leg begins to incline too much. We have 
shown the stabilization effect through the 3D simulations of a 
passive dynamic walker with toes. We have revealed the 
equations of motions and the state transition equations of the 
exchange of heel-toe rotations and swing-stance legs. 

Our results showed the potential effectiveness of the toe. 
However, the derivation of appropriate heights of toes and 
lateral arches, and the dynamical and numerical analysis of the 
effect of lateral arches are still left for further researches. 

As the passive constraint of the foot by toes and lateral 
arches does not use high motor torques and is easily attached 
on foot like shoes for a biped, we will continue to reveal 
control laws and more generic hardware designs. 
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APPENDIX 

The explicit forms of the equations of motions are shown 
below. Note that the font size is intentionally reduced due to 
the limitation of page length. 
 

 
 
 

 

 
 

Figure 11. A sequence of pictures of the lateral view of the real-world 

passive dynamic biped shown in Fig. 3. The order is from upper left to 

lower right. 


