121 research outputs found

    Most of the VP1 Unique Region of B19 Parvovirus Is on the Capsid Surface

    Get PDF
    AbstractB19 parvovirus is pathogenic in man and a vaccine is desirable. In convalescence after acute infection, the dominant humoral immune response is directed to the minor capsid protein called VP1, which differs from the major capsid protein by an additional NH2-terminal 227 amino acids. We have previously shown that this unique region contains multiple linear neutralizing epitopes. We produced seven recombinant B19 capsids that contained progressively truncated VP1 unique region sequences, each fused to a Flag peptide (AspTyrLysAspAspAspAspLys) at the NH2-terminus. Capsids containing normal VP2 and truncated Flag-VP1 proteins and, in some cases, only truncated Flag-VP1 chimeric proteins, were analyzed by ELISA, affinity chromatography, and electron microscopy using anti-Flag monoclonal antibody. All regions examined showed binding to anti-Flag antibody in multiple assays, indicating that most of the VP1 unique region is external to the capsid and accessible to antibody binding. These results have implications for the design of a B19 parvovirus vaccine and the use of empty capsids for presentation of heterologous protein antigens

    Human telomere disease due to disruption of the CCAAT box of the TERC promoter

    Get PDF
    Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly conserved CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063

    Establishment of an ES Cell-Derived Murine Megakaryocytic Cell Line, MKD1, with Features of Primary Megakaryocyte Progenitors

    Get PDF
    Because of the scarcity of megakaryocytes in hematopoietic tissues, studying megakaryopoiesis heavily relies on the availability of appropriate cellular models. Here, we report the establishment of a new mouse embryonic stem (ES) cell-derived megakaryocytic cell line, MKD1. The cells are factor-dependent, their cell surface immunophenotype and gene expression profile closely resemble that of primary megakaryocyte progenitors (MkPs) and they further differentiate along the megakaryocyte lineage upon valproic acid treatment. At a functional level, we show that ablation of SCL expression, a transcription factor critical for MkP maturation, leads to gene expression alterations similar to that observed in primary, Scl-excised MkPs. Moreover, the cell line is amenable to biochemical and transcriptional analyses, as we report for GpVI, a direct target of SCL. Thus, the MKD1 cell line offers a pertinent experimental model to study the cellular and molecular mechanisms underlying MkP biology and more broadly megakaryopoiesis

    Direct Interaction between Two Viral Proteins, the Nonstructural Protein 2CATPase and the Capsid Protein VP3, Is Required for Enterovirus Morphogenesis

    Get PDF
    In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2CATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel β€œreporter virus”, we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2CATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2CATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2CATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2CATPase is an essential component of the replication complex, and (iv) 2CATPase has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex

    A genetically engineered cell line that produces empty capsids of B19 (human) parvovirus.

    No full text
    • …
    corecore