1 research outputs found

    Requirements and validation of a prototype learning health system for clinical diagnosis

    Get PDF
    Introduction Diagnostic error is a major threat to patient safety in the context of family practice. The patient safety implications are severe for both patient and clinician. Traditional approaches to diagnostic decision support have lacked broad acceptance for a number of well-documented reasons: poor integration with electronic health records and clinician workflow, static evidence that lacks transparency and trust, and use of proprietary technical standards hindering wider interoperability. The learning health system (LHS) provides a suitable infrastructure for development of a new breed of learning decision support tools. These tools exploit the potential for appropriate use of the growing volumes of aggregated sources of electronic health records. Methods We describe the experiences of the TRANSFoRm project developing a diagnostic decision support infrastructure consistent with the wider goals of the LHS. We describe an architecture that is model driven, service oriented, constructed using open standards, and supports evidence derived from electronic sources of patient data. We describe the architecture and implementation of 2 critical aspects for a successful LHS: the model representation and translation of clinical evidence into effective practice and the generation of curated clinical evidence that can be used to populate those models, thus closing the LHS loop. Results/Conclusions Six core design requirements for implementing a diagnostic LHS are identified and successfully implemented as part of this research work. A number of significant technical and policy challenges are identified for the LHS community to consider, and these are discussed in the context of evaluating this work: medico-legal responsibility for generated diagnostic evidence, developing trust in the LHS (particularly important from the perspective of decision support), and constraints imposed by clinical terminologies on evidence generation
    corecore