33 research outputs found

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients

    Etiopathogenesis of Basedow's disease

    No full text
    Basedow's disease (BD) owes its name to the German physician Karl Adolph von Basedow, who described in 1840 the clinical picture of exophthalmic toxic goitre. More than one century after the seminal paper of Karl von Basedow, the ultimate cause of BD remains to be fully elucidated. In the last years, evidence was accumulated indicating that BD is a polygenic and multifactorial disease that develops as a result of a complex interplay between genetic susceptibility and environmental and endogenous factors, which leads to the loss of immune tolerance to thyroid antigens and in particular to the TSH receptor. Our aim is to review the current knowledge on the pathogenesis of BD. To this purpose, we will firstly focus our attention on the role of genetic factors (the HLA complex, the genes encoding for thyroglobulin, the TSH receptor, CD40, CTLA-4 and PTPN22), and of environmental factors (iodine, infections, psychological stress, gender, smoking, thyroid damage, vitamin D, selenium, immune modulating agents) as possible causes of BD. Taking advantage of the experimental animal models of BD, we will then focus on the immunological mechanisms leading to the loss of tolerance in BD. The pathogenic role played by the chemokine system will be also reviewed

    Evidence that factors other than particular thyrotropin receptor T cell epitopes contribute to the development of hyperthyroidism in murine Graves' disease

    No full text
    Immunization with thyrotropin receptor (TSHR)-adenovirus is an effective approach for inducing thyroid stimulating antibodies and Graves’ hyperthyroidism in BALB/c mice. In contrast, mice of the same strain vaccinated with TSHR-DNA have low or absent TSHR antibodies and their T cells recognize restricted epitopes on the TSHR. In the present study, we tested the hypothesis that immunization with TSHR-adenovirus induces a wider, or different, spectrum of TSHR T cell epitopes in BALB/c mice. Because TSHR antibody levels rose progressively from one to three TSHR-adenovirus injections, we compared T cell responses from mice immunized once or three times. Mice in the latter group were subdivided into animals that developed hyperthyroidism and those that remained euthyroid. Unexpectedly, splenocytes from mice immunized once, as well as splenocytes from hyperthyroid and euthyroid mice (three injections), all produced interferon-γ in response to the same three synthetic peptides (amino acid residues 52–71, 67–86 and 157–176). These peptides were also the major epitopes recognized by TSHR-DNA plasmid vaccinated mice. We observed lesser responses to a wide range of additional peptides in mice injected three times with TSHR-adenovirus, but the pattern was more consistent with increased background ‘noise’ than with spreading from primary epitopes to dominant secondary epitopes. In conclusion, these data suggest that factors other than particular TSHR T cell epitopes (such as adenovirus-induced expression of conformationally intact TSHR protein), contribute to the generation of thyroid stimulating antibodies with consequent hyperthyroidism in TSHR-adenovirus immunized mice

    Genetic immunization of outbred mice with thyrotropin receptor cDNA provides a model of Graves’ disease

    No full text
    We performed genetic immunization of outbred NMRI mice, using a cDNA encoding the human thyrotropin receptor (TSHr). All mice produced antibodies capable of recognizing the recombinant receptor expressed at the surface of stably transfected Chinese hamster ovary (CHO) cells, and sera from most of the immunized mice blocked TSH-dependent stimulation of cAMP accumulation in cells expressing the TSHr. Five out of 29 female mice showed sign of hyperthyroidism including elevated total T4 and suppressed TSH levels. The serum of these mice contained thyroid-stimulating activity, as measured in a classic assay using CHO cells expressing recombinant TSHr. In contrast, only 1 male out of 30 had moderately elevated serum total T4 with undetectable TSH values. The hyperthyroid animals had goiters with extensive lymphocytic infiltration, characteristic of a Th2 immune response. In addition, these animals displayed ocular signs reminiscent of Graves’ ophthalmopathy, including edema, deposit of amorphous material, and cellular infiltration of their extraocular muscles. Our results demonstrate that genetic immunization of outbred NMRI mice with the human TSHr provides the most convincing murine model of Graves’ disease available to date

    Cathepsin S is not crucial to TSHR processing and presentation in a murine model of Graves' disease

    No full text
    By regulating invariant (Ii) chain processing and MHC class II peptide loading, the endosomal protease cathepsin S (Cat S) has a potential role in autoimmune susceptibility. Indeed, Cat S null mice are resistant to I-Ab-restricted experimental myasthenia gravis due to inadequate peptide presentation. To explore the role of Cat S in a Graves' disease model, I-Ad-restricted wild-type (WT) and Cat S(–/–) mice were immunized with adenovirus encoding the A subunit of thyroid stimulating hormone receptor (TSHR). TSHR adenovirus immunized mice develop Th1 T cells, TSHR antibodies, and a proportion become overtly hyperthyroid. Although TSHR presentation in vitro was initially impaired in Cat S(–/–) mice, subsequent TSHR presentation in vitro and disease development were similar in both groups but with higher antibody responses in Cat S null mice. WT and Cat S(–/–) mice recognized similar T cell epitopes from a panel of overlapping TSHR peptides. TSHR responses were found to be I-Ad-restricted and Cat S(–/–) I-Ad B cells had marked defects in Ii processing. These data imply that loading of TSHR peptides critical to TSHR antibody responses becomes Ii-independent. Contrasting findings among organ-specific murine autoimmune models imply that potential uses of Cat S inhibitors to ameliorate autoimmunity must be determined empirically
    corecore