8,553 research outputs found

    Global stability analysis of birhythmicity in a self-sustained oscillator

    Full text link
    We analyze global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit cycles variation of the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients α\alpha and β\beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time τ\tau from one limit-cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation of the escape time τ\tau versus the inverse noise-intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201

    Violation of the Leggett-Garg Inequality in Neutrino Oscillations

    Get PDF
    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6σ6{\sigma} violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested.Comment: Updated to match published version. 6 pages, 2 figure

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    Weak Lensing by High-Redshift Clusters of Galaxies - I: Cluster Mass Reconstruction

    Full text link
    We present the results of a weak lensing survey of six high-redshift (z > 0.5), X-ray selected clusters of galaxies. We have obtained ultra-deep R-band images of each cluster with the Keck Telescope, and have measured a weak lensing signal from each cluster. From the background galaxy ellipticities we create two-dimensional maps of the surface mass density of each cluster. We find that the substructure seen in the mass reconstructions typically agree well with substructure in both the cluster galaxy distributions and X-ray images of the clusters. We also measure the one-dimensional radial profiles of the lensing signals and fit these with both isothermal spheres and "universal" CDM profiles. We find that the more massive clusters are less compact and not as well fit by isothermal spheres as the less massive clusters, possibly indicating that they are still in the process of collapse.Comment: 43 pages, 15 figures, uses aastex, submitted to ApJ 4 color plates produced here as jpg's, larger versions of the jpgs can be found at http://www.mpa-garching.mpg.de/~clow

    Inflationary Reheating in Grand Unified Theories

    Get PDF
    Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these theories ? We answer these questions in two interesting limiting cases and demonstrate an increased efficiency of reheating which strongly enhances non-thermal topological defect formation, including monopoles and domain walls. Nevertheless, the large fluctuations may resolve this monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D) figures available from http://www.sissa.it/~bassett/reheating/ . Matched to version to appear in Phys. Rev. let
    corecore