9,993 research outputs found

    Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory

    Get PDF
    We calculate the imaginary part of the induced pseudoscalar form factor of the nucleon GP(t)G_P(t) in the framework of two-loop heavy baryon chiral perturbation theory. The effect of the calculated three-pion continuum on the pseudoscalar constant gP=(mμ/2M)GP(t=−0.877mμ2)g_P = (m_\mu/2M) G_P(t=-0.877m_\mu^2) measurable in ordinary muon capture μ−p→νμn\mu^-p\to \nu_\mu n turns out to be negligibly small. Possible contributions from counterterms at two-loop order are numerically smaller than the uncertainty of the dominant pion-pole term proportional to the pion-nucleon coupling constant gπN=13.2±0.2g_{\pi N}= 13.2\pm 0.2. We conclude that a sufficiently accurate representation of the induced pseudoscalar form factor of the nucleon at low momentum transfers tt is given by the sum of the pion-pole term and the Adler-Dothan-Wolfenstein term: GP(t)=4gπNMfπ/(mπ2−t)−2gAM2/3G_P(t) = 4g_{\pi N} M f_\pi/ (m_\pi^2 -t)- 2g_A M^2 /3, with =(0.44±0.02) = (0.44 \pm 0.02) fm2^2 the axial mean square radius of the nucleon.Comment: 6 pages, 2 figures, accepted for publication in Physical Review

    Comment about constraints on nanometer-range modifications to gravity from low-energy neutron experiments

    Full text link
    A topic of present interest is the application of experimentally observed quantum mechanical levels of ultra-cold neutrons in the earth's gravitational field for searching short-range modifications to gravity. A constraint on new forces in the nanometer-range published by Nesvizhevsky and Protasov follows from inadequate modelling of the interaction potential of a neutron with a mirror wall. Limits by many orders of magnitude better were already derived long ago from the consistency of experiments on the neutron-electron interaction.Comment: three page

    From Point Defects in Graphene to Two-Dimensional Amorphous Carbon

    Full text link
    While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.Comment: 10 pages, 10 figures including supplementary informatio

    A study of Schwinger-Dyson Equations for Yukawa and Wess-Zumino Models

    Get PDF
    We study Schwinger-Dyson equation for fermions in Yukawa and Wess-Zumino models, in terms of dynamical mass generation and the wavefunction renormalization function. In the Yukawa model with γ5\gamma_5-type interaction between scalars and fermions, we find a critical coupling in the quenched approximation above which fermions acquire dynamical mass. This is shown to be true beyond the bare 3-point vertex approximation. In the Wess-Zumino model, there is a neat cancellation of terms leading to no dynamical mass for fermions. We comment on the conditions under which these results are general beyond the rainbow approximation and also on the ones under which supersymmetry is preserved and the scalars as well do not acquire mass. The results are in accordance with the non-renormalization theorem at least to order α\alpha in perturbation theory. In both the models, we also evaluate the wavefunction renormalization function, analytically in the neighbourhood of the critical coupling and numerically, away from it.Comment: 12 pages and 7 Postscript figures, accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Effective Fokker-Planck Equation for Birhythmic Modified van der Pol Oscillator

    Full text link
    We present an explicit solution based on the phase-amplitude approximation of the Fokker-Planck equation associated with the Langevin equation of the birhythmic modified van der Pol system. The solution enables us to derive probability distributions analytically as well as the activation energies associated to switching between the coexisting different attractors that characterize the birhythmic system. Comparing analytical and numerical results we find good agreement when the frequencies of both attractors are equal, while the predictions of the analytic estimates deteriorate when the two frequencies depart. Under the effect of noise the two states that characterize the birhythmic system can merge, inasmuch as the parameter plane of the birhythmic solutions is found to shrink when the noise intensity increases. The solution of the Fokker-Planck equation shows that in the birhythmic region, the two attractors are characterized by very different probabilities of finding the system in such a state. The probability becomes comparable only for a narrow range of the control parameters, thus the two limit cycles have properties in close analogy with the thermodynamic phases

    Global stability analysis of birhythmicity in a self-sustained oscillator

    Full text link
    We analyze global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit cycles variation of the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients α\alpha and β\beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time τ\tau from one limit-cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation of the escape time τ\tau versus the inverse noise-intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201

    Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

    Get PDF
    We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the non-radiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment and stellar feedback. We show that the observed ICM properties outside cluster cores are well-reproduced in the simulations that include cooling and star formation, while the non-radiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. The X-ray observable-total mass relations for our simulated sample agree with the Chandra measurements to \~10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging and the existence of tight relations of X-ray observables, such as Yx, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes.Comment: 14 pages, 6 figures. Matches version accepted to Ap

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.
    • …
    corecore