508 research outputs found

    Approximated center-of-mass motion for systems of interacting particles with space- and velocity-dependent friction and anharmonic potential

    Full text link
    We study the center-of-mass motion in systems of trapped interacting particles with space- and velocity-dependent friction and anharmonic traps. Our approach, based on a dynamical ansatz assuming a fixed density profile, allows us to obtain information at once for a wide range of binary interactions and interaction strengths, at linear and nonlinear levels. Our findings are first tested on different simple models by comparison with direct numerical simulations. Then, we apply the method to characterize the motion of the center of mass of a magneto-optical trap and its dependence on the number of trapped atoms. Our predictions are compared with experiments performed on a large Rb85 magneto-optical trap.Comment: 9 pages, 8 figure

    Decay dynamics in the coupled-dipole model

    Full text link
    Cooperative scattering in cold atoms has gained renewed interest, in particular in the context of single-photon superradiance, with the recent experimental observation of super-and subradiance in dilute atomic clouds. Numerical simulations to support experimental signatures of cooperative scattering are often limited by the number of dipoles which can be treated, well below the number of atoms in the experiments. In this paper, we provide systematic numerical studies aimed at matching the regime of dilute atomic clouds. We use a scalar coupled-dipole model in the low excitation limit and an exclusion volume to avoid density-related effects. Scaling laws for super-and subradiance are obtained and the limits of numerical studies are pointed out. We also illustrate the cooperative nature of light scattering by considering an incident laser field, where half of the beam has a π\pi phase shift. The enhanced subradiance obtained under such condition provides an additional signature of the role of coherence in the detected signal

    Subradiance in a Large Cloud of Cold Atoms

    Full text link
    Since Dicke's seminal paper on coherence in spontaneous radiation by atomic ensembles, superradiance has been extensively studied. Subradiance, on the contrary, has remained elusive, mainly because subradiant states are weakly coupled to the environment and are very sensitive to nonradiative decoherence processes.Here we report the experimental observation of subradiance in an extended and dilute cold-atom sample containing a large number of particles. We use a far detuned laser to avoid multiple scattering and observe the temporal decay after a sudden switch-off of the laser beam. After the fast decay of most of the fluorescence, we detect a very slow decay, with time constants as long as 100 times the natural lifetime of the excited state of individual atoms. This subradiant time constant scales linearly with the cooperativity parameter, corresponding to the on-resonance optical depth of the sample, and is independent of the laser detuning, as expected from a coupled-dipole model

    Cooperativity in light scattering by cold atoms

    Full text link
    A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.Comment: 15 pages, 8 figure

    Intensity fluctuations signature of 3D Anderson localization of light

    Full text link
    Apart from the difficulty of producing highly scattering samples, a major challenge in the observation of Anderson localization of 3D light is identifying an unambiguous signature of the phase transition in experimentally feasible situations. In this letter we establish a clear correspondence between the collapse of the conductance, the increase in intensity fluctuations at the localization transition and the scaling analysis results based on the Thouless number, thus connecting the macroscopic and microscopic approaches of localization. Furthermore, the transition thus inferred is fully compatible both with the results based on the eigenvalue analysis of the microscopic description and with the effective-medium Ioffe-Regel criterion
    corecore