25 research outputs found

    Polymyxin B is an inhibitor of insulin-induced hypoglycemia in the whole animal model. Studies on the mode of inhibitory action

    Get PDF
    The cyclic decapeptide, polymyxin B (PMXB), was found to inhibit hypoglycemia in mice receiving exogenous insulin (Amir, S., and Shechter, Y. (1985) Eur. J. Pharmacol. 110, 283-285). In this study, we have extended this observation to rats. Insulin-dependent hypoglycemia in rats is efficiently blocked at a 12:1 molar ratio of PMXB to insulin. This effect is highly specific, as it could not be mimicked by a variety of antibiotics or positively charged substances. Chemical modifications of PMXB have revealed that the ring structure, rather than the tail structure, is important for anti-insulin-like activity. Colistin A, which differs from PMXB by one conservative amino acid substitution in the ring structure, is devoid of this activity. Polymyxin B does not interact with insulin, nor does it alter the rate of insulin absorption and/or degradation, or the ability of insulin to bind to target tissues. This peptide inhibits hypoglycemia by blocking insulin-dependent activation of the hexose transport mechanism, as deduced by in vitro studies. The effect of insulin in stimulating hexose uptake (and subsequent glucose metabolism) in both isolated muscle tissue and adipocytes is blocked with little or no effect on the basal activities of these processes. Colistin A has no significant inhibiting effect. Other insulin-dependent activities, such as inhibition of lipolysis in adipocytes or synthesis of DNA in muscle cells, are not inhibited. It is concluded that PMXB inhibits, in a highly specific manner, the action of insulin in stimulating hexose transport and subsequent glucose metabolism, both in vitro and in the whole animal model

    AMP-Activated Protein Kinase (AMPK) Mediates Nutrient Regulation of Thioredoxin-Interacting Protein (TXNIP) in Pancreatic Beta-Cells

    Get PDF
    Thioredoxin-interacting protein (TXNIP) regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression. The mechanisms involved in the opposing effects of glucose and fatty acids on TXNIP expression are unknown. We found that both palmitate and oleate inhibited TXNIP in a rat beta-cell line and islets. Palmitate inhibition of TXNIP was independent of fatty acid beta-oxidation or esterification. AMP-activated protein kinase (AMPK) has an important role in cellular energy sensing and control of metabolic homeostasis; therefore we investigated its involvement in nutrient regulation of TXNIP. As expected, glucose inhibited whereas palmitate stimulated AMPK. Pharmacologic activators of AMPK mimicked fatty acids by inhibiting TXNIP. AMPK knockdown increased TXNIP expression in presence of high glucose with and without palmitate, indicating that nutrient (glucose and fatty acids) effects on TXNIP are mediated in part via modulation of AMPK activity. TXNIP is transcriptionally regulated by carbohydrate response element-binding protein (ChREBP). Palmitate inhibited glucose-stimulated ChREBP nuclear entry and recruitment to the Txnip promoter, thereby inhibiting Txnip transcription. We conclude that AMPK is an important regulator of Txnip transcription via modulation of ChREBP activity. The divergent effects of glucose and fatty acids on TXNIP expression result in part from their opposing effects on AMPK activity. In light of the important role of TXNIP in beta-cell apoptosis, its inhibition by fatty acids can be regarded as an adaptive/protective response to glucolipotoxicity. The finding that AMPK mediates nutrient regulation of TXNIP may have important implications for the pathophysiology and treatment of diabetes

    Glucose Amplifies Fatty Acid-Induced Endoplasmic Reticulum Stress in Pancreatic β-Cells via Activation of mTORC1

    Get PDF
    BACKGROUND: Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in beta-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic beta-cells, leading to beta-cell dysfunction and death. Why glucose exacerbates beta-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased beta-cell ER stress. PRINCIPAL FINDINGS: We found that glucose amplifies palmitate-induced ER stress by increasing IRE1alpha protein levels and activating the JNK pathway, leading to increased beta-cell apoptosis. Moreover, glucose increased mTORC1 activity and its inhibition by rapamycin decreased beta-cell apoptosis under conditions of glucolipotoxicity. Inhibition of mTORC1 by rapamycin did not affect proinsulin and total protein synthesis in beta-cells incubated at high glucose with palmitate. However, it decreased IRE1alpha expression and signaling and inhibited JNK pathway activation. In TSC2-deficient mouse embryonic fibroblasts, in which mTORC1 is constitutively active, mTORC1 regulated the stimulation of JNK by ER stressors, but not in response to anisomycin, which activates JNK independent of ER stress. Finally, we found that JNK inhibition decreased beta-cell apoptosis under conditions of glucolipotoxicity. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings suggest that mTORC1 mediates glucose amplification of lipotoxicity, acting through activation of ER stress and JNK. Thus, mTORC1 is an important transducer of ER stress in beta-cell glucolipotoxicity. Moreover, in stressed beta-cells mTORC1 inhibition decreases IRE1alpha protein expression and JNK activity without affecting ER protein load, suggesting that mTORC1 regulates the beta-cell stress response to glucose and fatty acids by modulating the synthesis and activity of specific proteins involved in the execution of the ER stress response. This novel paradigm may have important implications for understanding beta-cell failure in type 2 diabetes
    corecore