75 research outputs found

    Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant

    Get PDF
    Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription–polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-393. Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-393 was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-393 was restricted to mouse skin. Reverse transcription–polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-393, which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family

    Deficiency of Epidermal Protein-Bound ω-Hydroxyceramides in Atopic Dermatitis

    Get PDF
    Atopic dermatitis is a common skin disease of unknown etiology with an impaired permeability barrier function. To learn more about the molecular pathology in lesional skin, we analyzed levels of free extractable as well as protein-bound barrier lipids in the epidermis of atopic dermatitis subjects. The amount of protein-bound ω-hydroxyceramides in healthy epidermis comprised 46–53 wt% of total protein-bound lipids, whereas this percentage was decreased to 23–28 wt% in nonlesional areas and even down to 10–25 wt% in affected atopic skin areas of the subjects. Furthermore, the partial amount of free extractable very long chain fatty acids with more than 24 carbon atoms was reduced in affected regions down to 25 wt% and in nonlesional regions of the atopic dermatitis subjects down to 40 wt% compared to healthy controls. This “hydrocarbon chain length deficiency” regarding the barrier lipids in atopic skin was supported by metabolic labeling studies with [14C]-serine in cultured epidermis. The biosynthesis of free glucosylceramides and free ceramides was remarkably decreased in affected skin areas of the atopic subjects compared to healthy control subjects. Especially affected were the de novo syntheses of ceramide 4 (i.e., ceramide EOH, consisting of a very long chain N-acyl ω-hydroxy fatty acid esterified with linoleic acid and 6-hydroxysphingosine as sphingoid base) and ceramide 3 (ceramide NP, consisting of a nonhydroxy N-acyl fatty acid and phytosphingosine). In conclusion, this study revealed that the lesional epidermis in atopic dermatitis has considerable deficiencies within main barrier lipid components, which may contribute to the severely damaged permeability barrier
    • …
    corecore