1,013 research outputs found

    Improved forecasts for the baryon acoustic oscillations and cosmological distance scale

    Get PDF
    We present the cosmological distance errors achievable using the baryon acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile we accommodate the Lagrangian displacement distribution into the Fisher matrix calculation to reflect the gradual loss of information in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift distortions. We then show that we can contract the multi-dimensional Fisher matrix calculations into a 2-dimensional or even 1-dimensional formalism with physically motivated approximations. We present the resulting fitting formula for the cosmological distance errors from galaxy redshift surveys as a function of survey parameters and nonlinearity, which saves us going through the 12-dimensional Fisher matrix calculations. Finally, we show excellent agreement between the distance error estimates from the revised Fisher matrix and the precision on the distance scale recovered from N-body simulations.Comment: Submitted to ApJ, 21 pages, LaTe

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest

    Full text link
    We explore the requirements for a Lyman-alpha forest (LyaF) survey designed to measure the angular diameter distance and Hubble parameter at 2~<z~<4 using the standard ruler provided by baryonic acoustic oscillations (BAO). The goal would be to obtain a high enough density of sources to probe the three-dimensional density field on the scale of the BAO feature. A percent-level measurement in this redshift range can almost double the Dark Energy Task Force Figure of Merit, relative to the case with only a similar precision measurement at z~1, if the Universe is not assumed to be flat. This improvement is greater than the one obtained by doubling the size of the z~1 survey, with Planck and a weak SDSS-like z=0.3 BAO measurement assumed in each case. Galaxy BAO surveys at z~1 may be able to make an effective LyaF measurement simultaneously at minimal added cost, because the required number density of quasars is relatively small. We discuss the constraining power as a function of area, magnitude limit (density of quasars), resolution, and signal-to-noise of the spectra. For example, a survey covering 2000 sq. deg. and achieving S/N=1.8 per Ang. at g=23 (~40 quasars per sq. deg.) with an R~>250 spectrograph is sufficient to measure both the radial and transverse oscillation scales to 1.4% from the LyaF (or better, if fainter magnitudes and possibly Lyman-break galaxies can be used). At fixed integration time and in the sky-noise-dominated limit, a wider, noisier survey is generally more efficient; the only fundamental upper limit on noise being the need to identify a quasar and find a redshift. Because the LyaF is much closer to linear and generally better understood than galaxies, systematic errors are even less likely to be a problem.Comment: 18 pages including 6 figures, submitted to PR

    Metric for attractor overlap

    Full text link
    We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e., ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshots to snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse-graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids, and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by few representative centroids. We employ MAO for two quite different actuated flow configurations: (1) a two-dimensional wake of the fluidic pinball with vortices in a narrow frequency range and (2) three-dimensional wall turbulence with broadband frequency spectrum manipulated by spanwise traveling transversal surface waves. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.Comment: 33 pages, 20 figure

    Repetition Probability Does Not Affect fMRI Repetition Suppression for Objects

    Get PDF
    Previously several functional magnetic resonance imaging (fMRI) studies point toward the role of perceptual expectations in determining adaptation or repetition suppression (RS) in humans. These studies showed that the probability of repetitions of faces within a block influences the magnitude of adaptation in face-related areas of the human brain (Summerfield et al., 2008). However, a current macaque single-cell/local field potential (LFP) recording study using objects as stimuli found no evidence for the modulation of the neural response by the repetition probability in the inferior temporal cortex (Kaliukhovich and Vogels, 2010). Here we examined whether stimulus repetition probability affects fMRI repetition suppression for nonface object stimuli in the human brain. Subjects were exposed to either two identical [repetition trials (RTs)] or two different [alternation trials (ATs)] object stimuli. Both types of trials were presented blocks consisting of either 75% [repetition blocks (RBs)] or 25% [alternation blocks (ABs)] of RTs. We found strong RS, i.e., a lower signal for RTs compared to ATs, in the object sensitive lateral occipital cortex as well as in the face-sensitive occipital and fusiform face areas. More importantly, however, there was no significant difference in the magnitude of RS between RBs and ABs in each of the areas. This is in agreement with the previous monkey single-unit/LFP findings and suggests that RS in the case of nonface visual objects is not modulated by the repetition probability in humans. Our results imply that perceptual expectation effects vary for different visual stimulus categories

    Chiral effective theory predictions for deuteron form factor ratios at low Q^2

    Get PDF
    We use chiral effective theory to predict the deuteron form factor ratio G_C/G_Q as well as ratios of deuteron to nucleon form factors. These ratios are calculated to next-to-next-to-leading order. At this order the chiral expansion for the NN isoscalar charge operator (including consistently calculated 1/M corrections) is a parameter-free prediction of the effective theory. Use of this operator in conjunction with NLO and NNLO chiral effective theory wave functions produces results that are consistent with extant experimental data for Q^2 < 0.35 GeV^2. These wave functions predict a deuteron quadrupole moment G_Q(Q^2=0)=0.278-0.282 fm^2-with the variation arising from short-distance contributions to this quantity. The variation is of the same size as the discrepancy between the theoretical result and the experimental value. This motivates the renormalization of G_Q via a two-nucleon operator that couples to quadrupole photons. After that renormalization we obtain a robust prediction for the shape of G_C/G_Q at Q^2 < 0.3 GeV^2. This allows us to make precise, model-independent predictions for the values of this ratio that will be measured at the lower end of the kinematic range explored at BLAST. We also present results for the ratio G_C/G_M.Comment: 31 pages, 7 figure

    Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak

    Full text link
    The baryon acoustic oscillations are a promising route to the precision measure of the cosmological distance scale and hence the measurement of the time evolution of dark energy. We show that the non-linear degradation of the acoustic signature in the correlations of low-redshift galaxies is a correctable process. By suitable reconstruction of the linear density field, one can sharpen the acoustic peak in the correlation function or, equivalently, restore the higher harmonics of the oscillations in the power spectrum. With this, one can achieve better measurements of the acoustic scale for a given survey volume. Reconstruction is particularly effective at low redshift, where the non-linearities are worse but where the dark energy density is highest. At z=0.3, we find that one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. We discuss the significant implications our results have for the design of galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa

    Kinematics and Mass Profile of AWM 7

    Full text link
    We have measured 492 redshifts (311 new) in the direction of the poor cluster AWM~7 and have identified 179 cluster members (73 new). We use two independent methods to derive a self-consistent mass profile, under the assumptions that the absorption-line galaxies are virialized and that they trace an underlying Navarro, Frenk & White (1997) dark matter profile: (1) we fit such an NFW profile to the radial distribution of galaxy positions and to the velocity dispersion profile; (2) we apply the virial mass estimator to the cluster. With these assumptions, the two independent mass estimates agree to \sim 15% within 1.7 h^{-1} Mpc, the radial extent of our data; we find an enclosed mass \sim (3+-0.5)\times 10^{14} h^{-1} M_\odot. The largest potential source of systematic error is the inclusion of young emission-line galaxies in the mass estimate. We investigate the behavior of the surface term correction to the virial mass estimator under several assumptions about the velocity anisotropy profile, still within the context of the NFW model, and remark on the sensitivity of derived mass profiles to outliers. We find that one must have data out to a large radius in order to determine the mass robustly, and that the surface term correction is unreliable at small radii.Comment: LaTeX, 5 tables, 7 figures, appeared as 2000 AJ 119 44; typos and Eq. 9 corrected; results are unaffecte

    Dynamical Mass Estimates of Large-Scale Filaments in Redshift Surveys

    Get PDF
    We propose a new method to measure the mass of large-scale filaments in galaxy redshift surveys. The method is based on the fact that the mass per unit length of isothermal filaments depends only on their transverse velocity dispersion. Filaments that lie perpendicular to the line of sight may therefore have their mass per unit length measured from their thickness in redshift space. We present preliminary tests of the method and find that it predicts the mass per unit length of filaments in an N-body simulation to an accuracy of ~35%. Applying the method to a select region of the Perseus-Pisces supercluster yields a mass-to-light ratio M/L_B around 460h in solar units to within a factor of two. The method measures the mass-to-light ratio on length scales of up to 50h^(-1) Mpc and could thereby yield new information on the behavior of the dark matter on mass scales well beyond that of clusters of galaxies.Comment: 21 pages, LaTeX with 6 figures included. Submitted to Ap
    • 

    corecore