2 research outputs found

    Theoretical Analysis of Exciton Wave Packet Dynamics in Polaritonic Wires

    Full text link
    We present a comprehensive study of exciton wave packet evolution in disordered lossless polaritonic wires. Our simulations reveal signatures of ballistic, diffusive, and subdiffusive exciton dynamics under strong light-matter coupling and identify the typical timescales associated with the transitions between these qualitatively distinct transport phenomena. We determine optimal truncations of the molecular subsystem and radiation field required for generating reliable time-dependent data from computational simulations at affordable cost. The time evolution of the photonic part of the wave function reveals that many cavity modes contribute to the dynamics in a non-trivial fashion. Hence, a sizable number of photon modes is needed to describe exciton propagation with reasonable accuracy. We find and discuss an intriguingly common lack of dominance of the photon mode on resonance with the molecular system both in the presence and absence of disorder. We discuss the implications of our investigations to the development of theoretical models and analysis of experiments where coherent intermolecular energy transport and static disorder play an important role
    corecore