24 research outputs found

    Mechanical Properties of New Composite Wood-Plastic Formworks with Aluminum Alloy Frame

    No full text
    Formwork engineering plays a crucial role in cost, efficiency, quality, and schedule in civil engineering. Currently, wood-plastic formwork, which has favorable mechanical properties such as wood and excellent stability, formability, ease of demolding, and time-saving as plastic, is earning its increasing reputation in construction. This work focuses on mechanical properties of two types of new composite wood-plastic formworks with aluminum alloy frame used for construction, that is, single-span simply supported and three-span continuous formworks. Experimental investigation shows that the two types of wood-plastic formworks demonstrate favorable performance, and the deflections and stresses are within the allowable range, thereby satisfying the structural bearing requirements. Numerical analyses confirm that the results of the refined and general finite element models are consistent with the experimental results, but the former has a higher accuracy. When the requirement of accuracy is not too strict, the general model is preferred, given the modeling convenience and high efficiency. On the basis of experimental and numerical investigations, practical simplified formulas are proposed to facilitate rapid calculation and evaluation considering transverse deflection and inconsistency of two materials. Therefore, the results in this work can provide a theoretical basis for developing and applying the new formworks

    Attenuation mechanism of Brucella melitensis M5-10, implications for vaccine development and differential diagnosis

    No full text
    Brucellosis is a worldwide zoonosis. Vaccination is the most efficient means to prevent and control brucellosis. The current licensed attenuated vaccines for animal use were developed by sequential passage in non-natural hosts that decreased virulence in its original hosts. The attenuation mechanism of these strains remains largely unknown. In the present study, we sequenced the genome of Brucella melitensis vaccine strain M5-10. Sequence analysis showed that a large number of genetic changes occurred in the vaccine strains. A total of 2854 genetic polymorphic sites, including 2548 SNP, 241 INDEL and 65 MNV were identified. Of the 2074 SNPs in coding regions, 1310 (63.2%) were non-synonymous SNPs. Gene number, percent and N/S ratios were disproportionally distributed among the cog categories. Genetic polymorphic sites were identified in genes of the virB operon, flagella synthesis, and virulence regulating systems. These data indicate that changes in some cog categories and virulence genes might result in the attenuation. These attenuation mechanisms also have implications for screening and development of new vaccine strains. The genetic changes in the genome represent candidate sites for differential diagnosis between these vaccine strains and other virulence ones. Transcription analysis of virulence genes showed that expression of dnaK, vjbR were reduced in M5-10 strain when compared with that in 16M. A duplex PCR targeting virB6 and dnaK was successfully used to differentiate between M5-10 and the virulent 16M strain. The genome re-sequencing technique represents a strong strategy not only for evaluation of vaccines, but also for development of new vaccines

    A functional nanocarrier that copenetrates extracellular matrix and multiple layers of tumor cells for sequential and deep tumor autophagy inhibitor and chemotherapeutic delivery

    No full text
    <p>To further enhance the intensity of deep tumor drug delivery and integrate a combined therapy, we herein report on a core-shell nanocarrier that could simultaneously overcome the double barriers of the extracellular matrix (ECM) and multiple layers of tumor cells (MLTC). A pH-triggered reversible swelling-shrinking core and an MMP2 (matrix metallopeptidase 2) degradable shell were developed to encapsulate chemotherapeutics and macroautophagy/autophagy inhibitors, respectively. MMP2 degraded the shell, which was followed by the autophagy inhibitors' release. The exposed core could diffuse along the pore within the ECM to deliver chemotherapeutics into deep tumors, and it was able to swell in lysosomes and shrink back in the cytoplasm or ECM. The swelling of the core resulted in the rapid release of chemotherapeutics to kill autophagy-inhibited cells. After leaving the dead cells, the shrinking core could act on neighboring cells that were closer to the center of the tumor. The core thus could also cross MLTC layer by layer to deliver chemotherapeutics into the deep tumor.</p

    Increased Gold Nanoparticle Retention in Brain Tumors by <i>in Situ</i> Enzyme-Induced Aggregation

    No full text
    The treatment of brain tumors remains a challenge due to the limited accumulation of drugs and nanoparticles. Here, we triggered the aggregation of gold nanoparticles (AuNPs) using legumain to enhance the retention of chemotherapeutics in brain tumors. This nanoplatform, AuNPs-A&C, is comprised of Ala-Ala-Asn-Cys-Lys modified AuNPs (AuNPs-AK) and 2-cyano-6-aminobenzothiazole modified AuNPs (AuNPs-CABT). AuNPs-AK could be hydrolyzed to expose the 1,2-thiolamino groups on AuNPs-AK in the presence of legumain, which occurs by a click cycloaddition with the contiguous cyano group on AuNPs-CABT, resulting in formation of AuNPs aggregates. This strategy led to an enhanced retention of the AuNPs in glioma cells both <i>in vitro</i> and <i>in vivo</i> due to the blocking of nanoparticle exocytosis and minimizing nanoparticle backflow to the bloodstream. After conjugation of doxorubicin (DOX) <i>via</i> a pH-sensitive linker to AuNPs-A&C, the efficiency for treating glioma was improved. The median survival time for the DOX-linked AuNPs-A&C increased to 288% in comparison to the saline group. We further show the use of the AuNPs-A&C for optical imaging applications. In conclusion, we provide a strategy to increase nanoparticle tumor accumulation with the potential to improve therapeutic outcome

    Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer

    No full text
    <p>The dense collagen network in tumors restricts the penetration of drugs into tumors. Free losartan could inhibit collagen, but it would cause hypotension at the dosage of 10 mg/kg/d. In this study, losartan was encapsulated in liposomes (LST-Lip) and the collagen inhibition ability of LST-Lip was investigated. Our results showed the blood pressure was not affected by LST-Lip at the dosage of 2.5 mg/kg every other day. The amount of Evans Blue in tumor in LST-Lip group was 1.98 times of that in control group. Confocal laser scanning microscopy images showed that prior injection of LST-Lip could inhibit collagen and further improve the tumorous accumulation of liposomes modified with TH peptides (AGYLLGHINLHHLAHL(Aib)HHIL-NH<sub>2</sub>) (TH-Lip) in 4T1 tumors. Compared with control group, the tumor inhibition rate of combined strategy of LST-Lip and paclitaxel loaded TH-Lip (PTX-TH-Lip) was 41.73%, while that of group only treated with PTX-TH-Lip was 14.94%. Masson’s trichrome staining confirmed that collagen was inhibited in LST-Lip group. Thus, the administration of LST-Lip in advance could inhibit the collagen in tumors effectively and did not affect the blood pressure, then PTX-TH-Lip injected subsequently could exert enhanced antitumor efficacy. In conclusion, this combined strategy might be promising for breast cancer therapy.</p

    Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor efficacy and minimized drug toxicity

    No full text
    <p>Cabazitaxel (CBX) is an effective antineoplastic agent for the treatment of many kinds of cancers. However, the poor water solubility remains a serious deterrent to the utilization of CBX as a commercial drug. In this study, we designed a strategy that integrated CBX into albumin nanoparticles (ANs) formed with human serum albumin (HSA) to improve the water solubility and targeting ability. Meanwhile, we utilized a photothermal agent-indocyanine green (ICG), which could cooperate with CBX to enhance the antitumor effect. The obtained ANs containing ICG and CBX (AN-ICG-CBX) exhibited good mono-dispersity. <i>In vitro</i> cytotoxicity study showed the effectiveness of CBX and ICG, respectively, whereas AN-ICG-CBX with irradiation exhibited the most efficient antiproliferative ability (83.7%). <i>In vivo</i> safety evaluation studies demonstrated the safety of AN-ICG-CBX. Furthermore, the <i>in vivo</i> antitumor study indicated that the AN-ICG-CBX with irradiation achieved higher tumor inhibition rate (91.3%) compared with CBX-encapsulated AN (AN-CBX) (83.3%) or ICG-encapsulated AN (AN-ICG) plus irradiation (60.1%) in 4T1 tumor-bearing mice. To sum up, a safety and effective formulation AN-ICG-CBX was developed in this study and successfully reduced the drug toxicity, improved the targeting efficiency and enhanced the therapeutic effects, becoming a promising candidate for clinical application.</p

    Tandem Peptide Based on Structural Modification of Poly-Arginine for Enhancing Tumor Targeting Efficiency and Therapeutic Effect

    No full text
    The nonselectivity of cell penetrating peptides had greatly limited the application in systemic administration. By conjugating a dGR motif to the C-terminal of octa-arginine, the formed tandem peptide R8-dGR had been proved to specifically recognize both integrin α<sub>v</sub>β<sub>3</sub> and neuropilin-1 receptors. However, the positive charge of poly-arginine would still inevitably lead to rapid clearance in the circulation system. Therefore, in this study, we tried to reduce the positive charge of poly-arginine by decreasing the number of arginine, to thus achieve improved tumor targeting efficiency. We had designed several different R<i>x</i>-dGR peptides (<i>x</i> = 4, 6, and 8) modified liposomes and investigated their tumor targeting and penetrating properties both <i>in vitro</i> and <i>in vivo</i>. Among all the liposomes, R6-dGR modified liposomes exhibited a long circulation time similar to that of PEGylated liposomes while they retained strong penetrating ability into both tumor cells and tumor tissues, and thus had displayed the most superior tumor targeting efficiency. Then, paclitaxel and indocyanine green coloaded liposomes were prepared, and R6-dGR modified coloaded liposomes also exhibited enhanced antitumor effect on C6 xenograft tumor bearing mice. Therefore, we suggest R6-dGR as a potential tumor targeting ligand with both strong penetrating ability and improved pharmacokinetic behavior, which could be further used for efficient antitumor therapy
    corecore