63 research outputs found
Characterisation of zebrafish haem oxygenase function in mycobacterial infection
Tuberculosis is one of the top 10 leading causes of death in the world. Infection with pathogenic mycobacteria such as Mycobacterium tuberculosis leads to the formation of granulomas, the hallmark histological feature of tuberculosis. Failure to maintain granuloma integrity results in loss of infection control or reactivation of tuberculosis disease. Hmox1 is a stress-responsive protein that can be upregulated rapidly and confers protection to the host. Haem oxygenase 1 (Hmox1) is a critical regulator of iron homeostasis by degrading haem into carbon monoxide, biliverdin and ferrous iron. The protective role of Hmox1 has been demonstrated in a variety of diseases. However, the role of Hmox1 in mycobacterial infection is equivocal with different results in different host-pathogen pairings. Chemokine production plays a crucial role in the recruitment of leukocytes to the focus of infection, particularly, monocyte chemoattractant protein-1 (MCP1) and its receptor CCR2. Hmox1 has been shown to regulate MCP1 expression in mice in the context of mycobacterial infection but limited information is available in zebrafish. Meanwhile, as a key regulator of iron metabolism, Hmox1 may also control the availability of iron during infection, since iron is essential both the host and pathogen and the restriction of iron is an important host defence against bacteria. Mycobacteria require iron as a redox cofactor for vital enzymes and utilise multiple strategies to acquire iron within the host. In vivo imaging using zebrafish embryos and their natural pathogen Mycobacterium marinum enables us to collect unique insight into the functions of Hmox1 in infection.
This thesis describes the first generation of hmox1a mutant zebrafish and the first use of the zebrafish model system to investigate Hmox function in M. marinum infection. It connects mycobacterial infection-induced Hmox to iron restriction and prevention of deleterious ferroptosis during mycobacterial infection. This work provides insight into the role of Hmox in tuberculosis pathogenesis
LSSANet: A Long Short Slice-Aware Network for Pulmonary Nodule Detection
Convolutional neural networks (CNNs) have been demonstrated to be highly
effective in the field of pulmonary nodule detection. However, existing CNN
based pulmonary nodule detection methods lack the ability to capture long-range
dependencies, which is vital for global information extraction. In computer
vision tasks, non-local operations have been widely utilized, but the
computational cost could be very high for 3D computed tomography (CT) images.
To address this issue, we propose a long short slice-aware network (LSSANet)
for the detection of pulmonary nodules. In particular, we develop a new
non-local mechanism termed long short slice grouping (LSSG), which splits the
compact non-local embeddings into a short-distance slice grouped one and a
long-distance slice grouped counterpart. This not only reduces the
computational burden, but also keeps long-range dependencies among any elements
across slices and in the whole feature map. The proposed LSSG is easy-to-use
and can be plugged into many pulmonary nodule detection networks. To verify the
performance of LSSANet, we compare with several recently proposed and
competitive detection approaches based on 2D/3D CNN. Promising evaluation
results on the large-scale PN9 dataset demonstrate the effectiveness of our
method. Code is at https://github.com/Ruixxxx/LSSANet.Comment: MICCAI 202
Configuring Intelligent Reflecting Surface with Performance Guarantees: Blind Beamforming
This work gives a blind beamforming strategy for intelligent reflecting
surface (IRS), aiming to boost the received signal-to-noise ratio (SNR) by
coordinating phase shifts across reflective elements in the absence of channel
information. While the existing methods of IRS beamforming typically first
estimate channels and then optimize phase shifts, we propose a conditional
sample mean based statistical approach that explores the wireless environment
via random sampling without performing any channel estimation. Remarkably, the
new method just requires a polynomial number of random samples to yield an SNR
boost that is quadratic in the number of reflective elements, whereas the
standard random-max sampling algorithm can only achieve a linear boost under
the same condition. Moreover, we gain additional insight into blind beamforming
by interpreting it as a least squares problem. Field tests demonstrate the
significant advantages of the proposed blind beamforming algorithm over the
benchmark algorithms in enhancing wireless transmission.Comment: 16 pages, 15 figure
A Linear Time Algorithm for the Optimal Discrete IRS Beamforming
It remains an open problem to find the optimal configuration of phase shifts
under the discrete constraint for intelligent reflecting surface (IRS) in
polynomial time. The above problem is widely believed to be difficult because
it is not linked to any known combinatorial problems that can be solved
efficiently. The branch-and-bound algorithms and the approximation algorithms
constitute the best results in this area. Nevertheless, this work shows that
the global optimum can actually be reached in linear time in terms of the
number of reflective elements (REs) of IRS. The main idea is to geometrically
interpret the discrete beamforming problem as choosing the optimal point on the
unit circle. Although the number of possible combinations of phase shifts grows
exponentially with the number of REs, it turns out that there are merely a
linear number of points on the unit circle to consider. Furthermore, the
proposed algorithm can be viewed as a novel approach to a special case of the
discrete quadratic program (QP).Comment: 5 page
Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm
We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America
Numerical and experimental analysis of sensitivity-enhanced RI sensor based on Ex-TFG in thin cladding fiber
We report a highly sensitive refractive index (RI) sensor in the aqueous solution, which is based on an 81°-tilted fiber grating structure inscribed into a thin cladding fiber with 40 μm cladding radius. The numerical analysis has indicated that the RI sensitivity of cladding resonance mode of the grating can be significantly enhanced with reducing cladding size. This has been proved by the experimental results as the RI sensitivities of TM and TE resonance peaks in the index region of 1.345 have been increased to 1180 nm/RIU and 1150 nm/RIU, respectively, from only 200 and 170 nm/RIU for the same grating structure inscribed in standard telecom fiber with 62.5-μm cladding radius. Although the temperature sensitivity has also increased, the change in temperature sensitivity is still insignificant in comparison with RI sensitivity enhancement
Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors
A critical challenge for the integration of the optoelectronics is that
photodetectors have relatively poor sensitivities at the nanometer scale. It is
generally believed that a large electrodes spacing in photodetectors is
required to absorb sufficient light to maintain high photoresponsivity and
reduce the dark current. However, this will limit the optoelectronic
integration density. Through spatially resolved photocurrent investigation, we
find that the photocurrent in metal-semiconductor-metal (MSM) photodetectors
based on layered GaSe is mainly generated from the photoexcited carriers close
to the metal-GaSe interface and the photocurrent active region is always close
to the Schottky barrier with higher electrical potential. The photoresponsivity
monotonically increases with shrinking the spacing distance before the direct
tunneling happen, which was significantly enhanced up to 5,000 AW-1 for the
bottom contacted device at bias voltage 8 V and wavelength of 410 nm. It is
more than 1,700-fold improvement over the previously reported results. Besides
the systematically experimental investigation of the dependence of the
photoresponsivity on the spacing distance for both the bottom and top contacted
MSM photodetectors, a theoretical model has also been developed to well explain
the photoresponsivity for these two types of device configurations. Our
findings realize shrinking the spacing distance and improving the performance
of 2D semiconductor based MSM photodetectors simultaneously, which could pave
the way for future high density integration of 2D semiconductor optoelectronics
with high performances.Comment: 25 pages, 4 figure
Characterization of multi-wavelength polarized light transmission in the real sea spray environment
Sea spray particles are a type of non-uniform, non-spherical, non-isotropic, and complex medium, and the study of the transmission characteristics of polarized light in a real sea spray environment can provide reference values in many fields, such as polarization imaging, marine target detection, and LiDAR, which can make up for the vacancy of polarized light transmission in a complex sea spray environment. In this paper, a real sea fog test is carried out in the Qingdao Sea area of China in the horizontal/oblique direction, and a platform for generating and detecting polarized light with multiple tilt angles is constructed by using the active test method, which realizes the test scheme for the characteristics of energy change and polarization state change in the linearly polarized light and circularly polarized light at different visibility levels in sea fog environments. The results show that it is more difficult to deflect the circularly polarized light than linearly polarized light at the same sea spray visibility level. With the increase in the tilt angle, a decrease in the polarization is observed. The polarization of the near-infrared light is always larger than that of the visible light, which indicates that the circularly polarized light has better polarization preservation than the linearly polarized light and the polarization preservation of the near-infrared light is better than that of the visible light
Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma
BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant type of glioma. Integrated classification based on mRNA expression microarrays and whole–genome methylation subdivides GBM into five subtypes: Classical, Mesenchymal, Neural, Proneural-CpG island methylator phenotype (G-CIMP) and Proneural-non G-CIMP. Biomarkers that can be used to predict prognosis in each subtype have not been systematically investigated. METHODS: In the present study, we used Cox regression and risk-score analysis to construct respective prognostic microRNA (miRNA) signatures in the five intrinsic subtypes of primary glioblastoma in The Cancer Genome Atlas (TCGA) dataset. RESULTS: Patients who had high-risk scores had poor overall survival compared with patients who had low-risk scores. The prognostic miRNA signature for the Mesenchymal subtype (four risky miRNAs: miR-373, miR-296, miR-191, miR-602; one protective miRNA: miR-223) was further validated in an independent cohort containing 41 samples. CONCLUSION: We report novel diagnostic tools for deeper prognostic sub-stratification in GBM intrinsic subtypes based upon miRNA expression profiles and believe that such signature could lead to more individualized therapies to improve survival rates and provide a potential platform for future studies on gene treatment for GBM
Excessively tilted fiber grating sensors
The development of excessively tilted fiber gratings (Ex-TFGs) provides a new type of sensing device with high refractive index (RI) sensitivity, low thermal crosstalk and vector sensing property. Due to the asymmetric grating structure of Ex-TFG, the light in the core is coupled into high order forward-propagating cladding modes and split into two orthogonal polarization states, resulting in dual-peak resonances in the transmission spectrum. The Ex-TFG also exhibits a non-circularly symmetrical near field distribution, which endows an exceptional orientation sensing capability. Benefitting from the unique mode coupling behavior, Ex-TFGs have been studied and developed for many different sensing applications, such as polarization dependent torsion and loading sensors, vector accelerometer and magnetometer, and a variety of low thermal crosstalk bio/chemical sensors. This paper will review the recent study and development of Ex-TFGs in terms of mode coupling mechanism, fabrication method, transmission and sensor characteristics and the novel applications in sensing areas
- …