58 research outputs found

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    Seasonality of MRSA Infections

    Get PDF
    Using MRSA isolates submitted to our hospital microbiology laboratory January 2001–March 2010 and the number of our emergency department (ED) visits, quarterly community-associated (CA) and hospital-associated (HA) MRSA infections were modeled using Poisson regressions. For pediatric patients, approximately 1.85x (95% CI 1.45x–2.36x, adj. p<0.0001) as many CA-MRSA infections per ED visit occurred in the second two quarters as occurred in the first two quarters. For adult patients, 1.14x (95% CI 1.01x–1.29x, adj.p = 0.03) as many infections per ED visit occurred in the second two quarters as in the first two quarters. Approximately 2.94x (95% CI 1.39x–6.21x, adj.p = 0.015) as many HA-MRSA infections per hospital admission occurred in the second two quarters as occurred in the first two quarters for pediatric patients. No seasonal variation was observed among adult HA-MRSA infections per hospital admission. We demonstrated seasonality of MRSA infections and provide a summary table of similar observations in other studies

    Protein Co-Expression Analysis as a Strategy to Complement a Standard Quantitative Proteomics Approach:Case of a Glioblastoma Multiforme Study

    Get PDF
    Although correlation network studies from co-expression analysis are increasingly popular, they are rarely applied to proteomics datasets. Protein co-expression analysis provides a complementary view of underlying trends, which can be overlooked by conventional data analysis. The core of the present study is based on Weighted Gene Co-expression Network Analysis applied to a glioblastoma multiforme proteomic dataset. Using this method, we have identified three main modules which are associated with three different membrane associated groups; mitochondrial, endoplasmic reticulum, and a vesicle fraction. The three networks based on protein co-expression were assessed against a publicly available database (STRING) and show a statistically significant overlap. Each of the three main modules were de-clustered into smaller networks using different strategies based on the identification of highly connected networks, hierarchical clustering and enrichment of Gene Ontology functional terms. Most of the highly connected proteins found in the endoplasmic reticulum module were associated with redox activity while a core of the unfolded protein response was identified in addition to proteins involved in oxidative stress pathways. The proteins composing the electron transfer chain were found differently affected with proteins from mitochondrial Complex I being more down-regulated than proteins from Complex III. Finally, the two pyruvate kinases isoforms show major differences in their co-expressed protein networks suggesting roles in different cellular locations

    The atmospheric boundary layer over urban-like terrain: influence of the plan density on roughness sublayer dynamics

    Get PDF
    We investigate the effect of the packing density of cubical roughness elements on the characteristics of both the roughness sublayer and the overlying turbulent boundary layer, in the context of atmospheric flow over urban areas. This is based on detailed wind-tunnel hot-wire measurements of the streamwise velocity component with three wall-roughness configurations and two freestream flow speeds. The packing densities are chosen so as to obtain the three near-wall flow regimes observed in urban canopy flows, namely isolated-wake, wake-interference and skimming-flow regimes. Investigation of the wall-normal profiles of the one-point statistics up to third order demonstrates the impossibility of finding a unique set of parameters enabling the collapse of all configurations, except for the mean streamwise velocity component. However, spectral analysis of the streamwise velocity component provides insightful information. Using the temporal frequency corresponding to the peak in the pre-multiplied energy spectrum as an indicator of the most energetic flow structures at each wall-normal location, it is shown that three main regions exist, in which different scaling applies. Finally, scale decomposition reveals that the flow in the roughness sublayer results from a large-scale intrinsic component of the boundary layer combined with canopy-induced dynamics. Their relative importance plays a key role in the energy distribution and influences the near-canopy flow regime and its dynamics, therefore suggesting complex interactions between the near-wall scales and those from the overlying boundary layer
    corecore