17 research outputs found

    LAPP: Layer Adaptive Progressive Pruning for Compressing CNNs from Scratch

    Full text link
    Structured pruning is a commonly used convolutional neural network (CNN) compression approach. Pruning rate setting is a fundamental problem in structured pruning. Most existing works introduce too many additional learnable parameters to assign different pruning rates across different layers in CNN or cannot control the compression rate explicitly. Since too narrow network blocks information flow for training, automatic pruning rate setting cannot explore a high pruning rate for a specific layer. To overcome these limitations, we propose a novel framework named Layer Adaptive Progressive Pruning (LAPP), which gradually compresses the network during initial training of a few epochs from scratch. In particular, LAPP designs an effective and efficient pruning strategy that introduces a learnable threshold for each layer and FLOPs constraints for network. Guided by both task loss and FLOPs constraints, the learnable thresholds are dynamically and gradually updated to accommodate changes of importance scores during training. Therefore the pruning strategy can gradually prune the network and automatically determine the appropriate pruning rates for each layer. What's more, in order to maintain the expressive power of the pruned layer, before training starts, we introduce an additional lightweight bypass for each convolutional layer to be pruned, which only adds relatively few additional burdens. Our method demonstrates superior performance gains over previous compression methods on various datasets and backbone architectures. For example, on CIFAR-10, our method compresses ResNet-20 to 40.3% without accuracy drop. 55.6% of FLOPs of ResNet-18 are reduced with 0.21% top-1 accuracy increase and 0.40% top-5 accuracy increase on ImageNet.Comment: 12 pages, 8 tables, 3 figure

    Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation

    Get PDF
    Depression is a complex and biologically heterogeneous disorder. Recent studies have shown that central nervous system (CNS) inflammation plays a key role in the development of depression. Lipopolysaccharide (LPS)-induced depression-like model in mice is commonly used to studying the mechanisms of inflammation-associated depression and the therapeutic effects of drugs. Numerous LPS-induced depression-like models in mice exist and differ widely in animal characteristics and methodological parameters. Here, we systematically reviewed studies on PubMed from January 2017 to July 2022 and performed cardinal of 170 studies and meta-analyses of 61 studies to support finding suitable animal models for future experimental studies on inflammation-associated depression. Mouse strains, LPS administration, and behavioral outcomes of these models have been assessed. In the meta-analysis, forced swimming test (FST) was used to evaluate the effect size of different mouse strains and LPS doses. The results revealed large effect sizes in ICR and Swiss mice, but less heterogeneity in C57BL/6 mice. For LPS intraperitoneal dose, the difference did not affect behavioral outcomes in C57BL/6 mice. However, in ICR mice, the most significant effect on behavioral outcomes was observed after the injection of 0.5 mg/kg LPS. Our results suggests that mice strains and LPS administration play a key role in the evaluation of behavioral outcomes in such models

    Terahertz Magnon-Polaritons in TmFeO3

    Get PDF
    Magnon-polaritons are shown to play a dominant role in the propagation of terahertz (THz) waves through TmFeO3 orthoferrite, if the frequencies of the waves are in the vicinity of the quasi-antiferromagnetic spin resonance mode. Both time-domain THz transmission and emission spectroscopies reveal clear beatings between two modes with frequencies slightly above and slightly below this resonance, respectively. Rigorous modeling of the interaction between the spins of TmFeO3 and the THz light shows that the frequencies correspond to the upper and lower magnon-polariton branches. Our findings reveal the previously ignored importance of propagation effects and polaritons in such heavily debated areas as THz magnonics and THz spectroscopy of electromagnons. It also shows that future progress in these areas calls for an interdisciplinary approach at the interface between magnetism and photonics

    Discriminative <roman>GoDec</roman>+ for Classification

    No full text

    First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics

    No full text
    Due to their remarkable piezoelectric characteristics, (BaCa)(ZrTi)O3 (BCZT) ceramics exhibit vast potential for being employed in cutting-edge electromechanical apparatus. Extensive experimental studies have been conducted to better meet the practical needs of BCZT-based materials, focusing on their mechanical performance. However, there is a serious lack of research on the theoretical computational aspects. Here, first-principles calculations were utilized to evaluate the mechanical properties of BCZT-xGd ceramics. The structural models were established using the virtual crystal approximation (VCA) method. The investigated compounds demonstrate structural and mechanical strength, as evidenced by their negative formation energies and adherence to the Born stability criteria. Compared to pure BCZT, the substitution of Gd leads to a significant enhancement in the system’s elasticity and stiffness. The BCZT-0.05Gd with B-site doping demonstrates the highest level of Vicker’s hardness (HV), with the noteworthy observation that the inclusion of Gd concomitantly augments its machinability performance. Upon the incorporation of the Gd element, the anisotropic elasticity in the systems gradually transitions into isotropic elasticity, which favors a more uniform stress distribution and consequently reduces sensitivity to the formation and propagation of microcracks. These results indicate that BCZT-xGd exhibits potential for application in electromechanical systems

    Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts

    No full text
    Engineering structures in marine and vehicle are frequently subjected to repeated impact loadings. The damage can't be neglected during the accumulation of deflection caused by the repeated impacts. In this paper, the dynamic behaviour of aluminum foam sandwich plate (AFSP) under repeated impacts was investigated by impact tests using INSTRON 9350 Drop Tower. The penetration behavior of front face and back face are compared. Meanwhile, the relationships between deflections of face sheets with impact number as well as the loading-unloading process during repeated impacts are analyzed. Results showed that, the permanent deflections of the front face and back face increased gradually, while the increments decreased until the crack occurred on the front face sheet. The damage modes of front face and back face were different. The impact number (Np) for penetration of front fact and residual number (Nr) for perforation of back face both decreased in exponential form with the increase of impact energy. It implied that the back face sheet still has residual load-carrying capacity even if the front face sheet became cracked.</p

    A New Plastic Design Approach for the Vertical-Side-Plating Thickness of Ice-Strengthened Ships Suffering from Ice Floe Impacts

    No full text
    Ice-strengthened ships inevitably suffer from ice floe impacts during navigation in icy regions. Under some extreme-ice-impact loadings, the ship structure will experience plastic deformations. The magnitude of plastic deformation is highly correlated with the ice floe-impact energy level. During most ice impacts, only the ship’s plate undergoes minor plastic deformation. Considering that the structure still has a high structural strength with a minor permanent deformation, developing a structural plastic design method for polar ships has become a hot research issue in current studies. Therefore, in this paper, based on the rigid-plastic theory and the ice-crushing-energy approach, an experimentally verified theoretical model for predicting plastic deformations of the vertical-side plate of polar ship subjected to ice floe impacts was established. According to the analytical solutions of the plastic deformation, the plastic design formula to determine the plating thickness of ice-strengthened ships subjected to ice floe impacts was further derived based on the plastic design criteria. In addition, the parameter analysis of ice strength described by the ice pressure–area relationship, allowable-permanent-set parameter, impact energy and ice shape were conducted, and plating-thickness design curves with different design parameters were given. The design of plating thickness is very sensitive to the determinations of the allowable-permanent set and ice pressure–area curves. The designed plating thickness decreased with the increase of the allowable-permanent set. Moreover, a comparative analysis of the designed plating thickness for ice floe impact and rigid-mass impact was also carried out. Under the same impact conditions, due to energy absorption caused by ice damage, the designed thickness of the plate for rigid-mass impact was much larger than that for the ice impact. It is necessary to consider the impact-induced ice damage and energy dissipation in a structural design, instead of using rigid impact loads for conservative design. The research in this paper can provide some useful references for the structural design of ice-strengthened ships subject to ice floe impacts

    Heat treatments for thermal sprayed lead-free piezoelectric ceramic coatings

    No full text
    [0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]0.98-(LiNbO3)0.02 (BNBTLN) piezoelectric ceramic coating was fabricated by thermal spray process on stainless steel substrates with thermal barrier coating (TBC) as an intermediary layer. The morphology, structure, and electrical properties of the thermal-sprayed BNBTLN coatings after furnace heat treatment (F-HT) and plasma torch heat treatment (P-HT) were studied, respectively. The BNBTLN coatings after F-HT and P-HT both had the coexisting rhombohedral and tetragonal perovskite phases and exhibited excellent electrical properties, with an effective piezoelectric coefficient d33 of 68 p.m./V and 40 p.m./V, respectively. These results reveal that high quality piezoelectric coatings can be achieved by the P-HT method, which is promising for scaling up the fabrication of piezoelectric ceramic coatings

    Research on Green View Index of Urban Roads Based on Street View Image Recognition: A Case Study of Changsha Downtown Areas

    No full text
    In this paper, we took the urban roads in the Changsha downtown areas as an example to identify the green view index (GVI) of urban roads based on street view images (SVIs). First, the road network information was obtained through OpenStreetMap, and the coordinate information of sampling points was processed using ArcGIS. Secondly, the SVIs were downloaded from Baidu Map according to the latitude and longitude coordinates of the sampling points. Moreover, semantic segmentation neural network software was used to semantically segment the SVIs for recognizing the objects in each part of the images. Finally, the objects related to green vegetation were statistically analyzed to obtain the GVI of the sampling points. The GVI was mapped to the map in ArcGIS software for data visualization and analysis. The results showed the average GVI of the study area was 12.56%. An amount of 27% have very poor green perception, 40% have poor green perception, 19% have general green perception, 10% have strong green perception, and 4% have very strong green perception. In the administrative districts, the highest GVI is Yuhua District with 14.15%, while the lowest is Kaifu District with 8.75%. The average GVI of the new urban area is higher than that of the old urban area, as the old urban area has higher building density and a lower greenery level. This paper systematically evaluated the levels of GVI and greening status of urban streets within the Changsha downtown areas through SVIs data analysis, and provided guidance and suggestions for the greening development of Changsha City

    Isolation and Structure-Activity Relationship of Subergorgic Acid and Synthesis of Its Derivatives as Antifouling Agent

    No full text
    In this study, as part of our continuous search for environmentally-friendly antifoulants from natural resources, subergorgic acid (SA) was identified from the gorgonian coral Subergorgia suberosa, demonstrating non-toxic, significant inhibitory effects (EC50 1.25 &#956;g/mL, LC50 &gt; 25 &#956;g/mL) against the settlement of Balanus amphitrite. To further explore the bioactive functional groups of SA and synthesize more potent antifouling compounds based on the lead SA, the structure-activity relationships of SA were studied, followed by rational design and synthesis of two series of SA derivatives (one being benzyl esters of SA and another being SA derivatives containing methylene chains of various lengths). Our results indicated that (1) both the double bond and ketone carbonyl are essential elements responsible for the antifouling effect of SA, while the acid group is not absolutely necessary for maintaining the antifouling effect; (2) all benzyl esters of SA displayed good antifouling effects (EC50 ranged from 0.30 to 2.50 &#956;g/mL) with the most potent compound being 5 (EC50 0.30 &#956;g/mL, LC50 &gt; 25 &#956;g/mL), which was over four-fold more potent than SA; and (3) the introduction of a methylene chain into SA reduces the antifouling potency while the length of the methylene chain may differently influence the antifouling effect, depending on the functional group at the opposite site of the methylene chain. Not only has this study successfully revealed the bioactive functional groups of SA, contributing to the mechanism of SA against the settlement of B. amphitrite, but it has also resulted in the identification of a more potent compound 5, which might represent a non-toxic, high-efficiency antifoulant
    corecore