40 research outputs found

    Nutrient availability influences the thermal response of marine diatoms

    Get PDF
    Understanding how phytoplankton growth responds to temperature is critical for forecasting marine productivity in a warming ocean. While previous laboratory studies have shown that phytoplankton thermal traits such as optimal temperature (Topt) can be affected by nutrient availability, it is unclear whether this can be extrapolated to natural communities. To address this, we tested the impacts of nutrient availability on the thermal responses of two cosmopolitan diatom genera, Pseudoā€nitzschia and Leptocylindrus, through a series of in situ manipulation experiments on natural phytoplankton communities. Analysis of the thermal performance curves revealed that nutrient limitation during summer not only limited the growth of these two genera but also reduced their Topt and the maximum growth rates (Ī¼max). Topt was close to or lower than in situ temperature under ambient nutrient conditions, suggesting that further warming may have a detrimental effect on their growth. However, increasing nutrient supply could counteract this by enhancing Topt and Ī¼max. To further confirm the interactive effects of nutrients and temperature on diatoms, we analyzed a 20ā€yr monitoring dataset on Pseudoā€nitzschia, Leptocylindrus, and the whole diatom assembly in Hong Kong coastal waters. We found that the abundances of marine diatoms were significantly higher at high temperatures under nutrientā€rich environments while relatively low under low nutrient concentrations. Findings on natural diatom cell density align with the growth performance derived from in situ manipulation experiments, suggesting that abundant nutrients bolster marine diatoms in coping with warming. Our results highlight the importance of considering the influence of nutrient availability on thermal response of phytoplankton growth, which sheds light on how marine primary production may change under climate warming

    Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases

    Get PDF
    The genus Coronavirus contains about 25 species of coronaviruses (CoVs), which are important pathogens causing highly prevalent diseases and often severe or fatal in humans and animals. No licensed specific drugs are available to prevent their infection. Different host receptors for cellular entry, poorly conserved structural proteins (antigens), and the high mutation and recombination rates of CoVs pose a significant problem in the development of wide-spectrum anti-CoV drugs and vaccines. CoV main proteases (M(pro)s), which are key enzymes in viral gene expression and replication, were revealed to share a highly conservative substrate-recognition pocket by comparison of four crystal structures and a homology model representing all three genetic clusters of the genus Coronavirus. This conclusion was further supported by enzyme activity assays. Mechanism-based irreversible inhibitors were designed, based on this conserved structural region, and a uniform inhibition mechanism was elucidated from the structures of M(pro)-inhibitor complexes from severe acute respiratory syndrome-CoV and porcine transmissible gastroenteritis virus. A structure-assisted optimization program has yielded compounds with fast in vitro inactivation of multiple CoV M(pro)s, potent antiviral activity, and extremely low cellular toxicity in cell-based assays. Further modification could rapidly lead to the discovery of a single agent with clinical potential against existing and possible future emerging CoV-related diseases

    Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil

    No full text
    Abstract Background Decomposition of plant biomass is vital for carbon cycling in terrestrial ecosystems. In waterlogged soils including paddy fields and natural wetlands, plant biomass degradation generates the largest natural source of global methane emission. However, the intricate process of plant biomass degradation by diverse soil microorganisms remains poorly characterized. Here we report a chemical and metagenomic investigation into the mechanism of straw decomposition in a paddy soil. Results The chemical analysis of 16-day soil microcosm incubation revealed that straw decomposition could be divided into two stages based on the dynamics of methane, short chain fatty acids, dissolved organic carbon and monosaccharides. Metagenomic analysis revealed that the relative abundance of glucoside hydrolase (GH) encoding genes for cellulose decomposition increased rapidly during the initial stage (3ā€“7Ā days), while genes involved in hemicellulose decomposition increased in the later stage (7ā€“16Ā days). The increase of cellulose GH genes in initial stage was derived mainly from Firmicutes while Bacteroidota contributed mostly to the later stage increase of hemicellulose GH genes. Flagella assembly genes were prevalent in Firmicutes but scarce in Bacteroidota. Woodā€“Ljungdahl pathway (WLP) was present in Firmicutes but not detected in Bacteroidota. Overall, Bacteroidota contained the largest proportion of total GHs and the highest number of carbohydrate active enzymes gene clusters in our paddy soil metagenomes. The strong capacity of the Bacteroidota phylum to degrade straw polymers was specifically attributed to Bacteroidales and Chitinophagales orders, the latter has not been previously recognized. Conclusions This study revealed a collaborating sequential contribution of microbial taxa and functional genes in the decomposition of straw residues in a paddy soil. Firmicutes with the property of mobility, WLP and cellulose decomposition could be mostly involved in the initial breakdown of straw polymers, while Bacteroidota became abundant and possibly responsible for the decomposition of hemicellulosic polymers during the later stage

    Comparative Study for Multi-Speaker Mongolian TTS with a New Corpus

    No full text
    Low-resource text-to-speech synthesis is a very promising research direction. Mongolian is the official language of the Inner Mongolia Autonomous Region and is spoken by more than 10 million people worldwide. Mongolian, as a representative low-resource language, has a relative lack of open-source datasets for its TTS. Therefore, we make public an open-source multi-speaker Mongolian TTS dataset, named MnTTS2, for related researchers. In this work, we invited three Mongolian announcers to record topic-rich speeches. Each announcer recorded 10 h of Mongolian speech, and the whole dataset was 30 h in total. In addition, we built two baseline systems based on state-of-the-art neural architectures, including a multi-speaker Fastspeech 2 model with HiFi-GAN vocoder and a full end-to-end VITS model for multi-speakers. On the system of FastSpeech2+HiFi-GAN, the three speakers scored 4.0 or higher on both naturalness evaluation and speaker similarity. In addition, the three speakers achieved scores of 4.5 or higher on the VITS model for naturalness evaluation and speaker similarity scores. The experimental results show that the published MnTTS2 dataset can be used to build robust Mongolian multi-speaker TTS models

    Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene

    No full text
    Nitrated polycyclic aromatic hydrocarbons (nPAHs) are ubiquitous environmental pollutants, which exhibits higher toxicity than their corresponding parent PAHs (pPAHs). Recent studies demonstrated that the nPAHs could represent major soil pollution, however the remediation of nPAHs has been rarely reported. In this study, biological, physical, and chemical methods have been applied to remove 1-nitropyrene, the model nPAH, in contaminated soil. A comparative study with pyrene has also been investigated and evaluated. The results suggest that the physical method with activated carbon is an efficient and economical approach, removing 88.1% and 78.0% of 1-nitropyrene and pyrene respectively, within one day. The zero-valent ion has a similar removal performance on 1-nitropyrene (83.1%), converting 1-nitropyrene to 1-aminopyrene in soil via chemical reduction and decreasing the mutagenicity and carcinogenicity of 1-nitropyrene. Biological remediation that employs scallion as a plant model can reduce 55.0% of 1-nitropyrene in soil (from 39.6 to 17.8 μg/kg), while 77.9% of pyrene can be removed by plant. This indicates that nPAHs might be more persistent than corresponding pPAHs in soil. It is anticipated that this study could draw public awareness of nitro-derivatives of pPAHs and provide remediation technologies of carcinogenic nPAHs in soil

    Can Melatonin Improve the Osteopenia of Perimenopausal and Postmenopausal Women? A Meta-Analysis

    No full text
    Objective. To assess the effectiveness and safety of melatonin for perimenopausal and postmenopausal women with osteopenia. Methods. In this meta-analysis, data from randomized controlled trials were obtained to assess the effects of melatonin versus placebo or western medicine in perimenopausal and postmenopausal women with osteopenia. The studyā€™s registration number is CRD42018086238. The primary outcomes included bone mineral density (BMD) and T-score. Result. From 551 articles retrieved, three trials involving 121 patients were included. Due to the high-to-substantial heterogeneity (BMD: I2=96.9%, P=0.000; T-score: I2=74.9%, and P=0.019), the statistical analysis of BMD and T-score was abandoned. A systematic review was undergone for the two outcomes. Compared with the control group, melatonin may increase osteocalcin (WMD 4.97; 95% CI 3.14, 6.79; P<0.00001). Conclusion. Based on current evidence, melatonin might be used as a safe nutritional supplement to improve bone density in perimenopausal and postmenopausal women, but its efficacy needs to be further affirmed

    Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    No full text
    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided

    Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    No full text
    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided
    corecore