140 research outputs found

    Interfacial rheology of microcapsules and dynamics in flow

    Get PDF
    A capsule is a drop bounded by a thin solid membrane providing specific mechanical properties. It is used to control the spatio-temporal delivery of substances in numerous processes and also as a model system of cells. Its dynamics under flow depends on its membrane characteristics. Moreover, the delivery of encapsulated drugs is controlled by its deformation. The interfacial rheology of microcapsules can be tuned according to their formulation. We will focus on cross-linked membrane made with human serum albumin and chitosan assembled with a surfactant via electrostatic interactions. The interfacial rheological properties of these soft microparticles are deduced from their dynamics of deformation in elongation and shear flows. In elongation flow, the surface shear modulus of the membrane is measured and related to the kind of biopolymer used and to the main parameters of the process of fabrication. In the regime of large deformations, the microcapsules can present a non-linear elastic response or plastic deformations. Non-linear elastic constitutive law is deduced by comparison of the evolution of the shape of the microcapsule in the two main planes of deformation of the capsule with numerical simulations. In shear flow, the rotation of the membrane, i.e. the tank-treading, is visualised and quantified by decorating the membrane of microcapsules with particles. The tracking of the distance between two close microparticles showed membrane contraction at the tips and stretching on the sides. This dynamic of deformation induce viscous dissipation inside the membrane. The order of magnitude of membrane viscosity is determined by comparison with numerical simulations. Wrinkling instability is observed in extensional flow and studied by varying the interfacial properties of the microcapsules. In this way, the phase diagram of wrinkle instability for microcapsules has been deduced as the scaling law between the wrinkles wave-length and the membrane thickness. Finally, we have developed a set of tools to characterize the interfacial viscoelasticity of microcapsules, their bending modulus and their non-linear elastic properties. We conclude the talk with some results on break-up of microcapsules in flow. Please click Additional Files below to see the full abstract

    Energy-Based Controller Design of Stochastic Magnetic Levitation System

    Get PDF
    This paper investigates the control problem of magnetic levitation system, in which velocity feedback signal is influenced by stochastic disturbance. Firstly, single-degree-freedom magnetic levitation is regarded as an energy-transform action device. From the view of energy-balance relation, the magnetic levitation system is transformed into port-controlled Hamiltonian system model. Next, based on the Hamiltonian structure, the control law of magnetic levitation system is designed by applying Lyapunov theory. Finally, the simulation verifies the correctness of the proposed results

    Instabilité de rides sur des microcapsules en écoulement extensionnel

    Get PDF
    International audienceLes particules déformables telles que les cellules, les vésicules ou les microcapsules, ont une dynamique spatio-temporelle riche enécoulement. Un exemple marquant concerne les globules rouges qui présentent des oscillations de leur forme ainsi que des rotations dans desécoulements de cisaillement. De plus, d'autres phénomÚnes non-linéaires surgissent tels que le flambement de la membrane, observé sur des globules rouges rigidifiés ou bien encore des capsules [1,2] dans les années 70. Inspiré par les globules rouges, nousétudions l'émergence de telles instabilitésélastiques sur des microcapsules enécoulement extensionnel. Des rides trÚs bien définies apparaissent sur la membrane de la capsule en extension lorsque la contrainte hydrodynamique dépasse un seuil. Au-delà de ce seuil, cette instabilité supercritique se développe le long de la capsule jusqu'à ce que la longueur des plis sature. La valeur critique de la contrainte hydrodynamique dépend du moduleélastique surfacique de cisaillement de la microcapsule mais correspond toujoursà une valeur fixée de la déformation. Abstract. Deformable particles such as cells, vesicles and microcapsules, have rich spatio-temporal dynamics of their shapes under flow. A striking example is the case of red blood cells (RBCs) in shear flow : tumbling, swinging oscillations of the shapes. Except that, other non-linear phenomena, for example buckling, are observed on the stiffened RBCs or artificial capsules [1,2]. Inspired by RBCs, we investigate emergence of such elastic instability on biomimetic microcapsules in extensional flow. Well-defined wrinkles are first observed on the membrane of stretched capsules when the hydrodynamic stress is above a threshold. Above the threshold, this supercritical instability expands along the microcapsule up to saturate. The critical hydrodynamic stress depends on the surfacic shear elastic modulus of the microcapsule's membrane, but always corresponds to the same value of the deformation

    Monodisperse microcapsules with controlled interfacial properties generated in microfluidic T-shape junction

    Get PDF
    Microcapsules are widely found in the nature (e.g. red blood cells and some bacteria), as well as in artificial products. They are generally well-considered as liquid drop bounded by an elastic membrane which is often used to protect the core materials from the external harsh environments. Capsules of biopolymers are exhibiting a large increase of promising applications in the encapsulation and release of medical drugs, food additives, and cosmetics[1-3]. Indeed, there is also a growing interest to model the dynamics of red blood cells (RBCs) motion in vessels or circulations using artificial microcapsules. Particularly, in some cases, it requires the homogeneous physic-chemical properties of capsules, such as uniform size, same shell structure and mechanical characteristics. Therefore, the most challenging work could be to develop a facile strategy to synthesis microcapsules with controlled properties-determined parameters. The preparation of monodisperse microcapsules involves emulsification of the disperse phase into the continuous phase which both are immiscible. There are several strategies been developed to fabricate capsules including batch methods (high-pressure valve homogenisers, static mixers, and rotor stator systems), electrospray techniques, and emulsification through membrane pores. These methods, however, require multistage emulsion processes, and capsules obtained with non-uniform properties and a largely wide distribution of sizes[4-5]. To overcome these problems, recently, microfluidic controlling techniques are introduced, by which monodisperse biopolymer capsules in micrometer size ranges are allowed to be generated in a single step. The main purpose of this study is to develop an approach of fabricating monodisperse biopolymer microcapsules with homogeneous properties on the base of microfluidic controlling components. Thereafter, the membrane properties of obtained capsules are proposed to be measured consisting of flowing a capsule suspension into an elongation flow. The deformation of capsules in the elongation flow can be divided into two regions: linear and non-linear zones. Surface shear elastic modulus of the shell in the linear region (small deformation) and membrane wrinkles instability or plastic deformation in the non-linear region are detected, respectively. Furthermore, thanks to the microfluidic techniques, the interfacial rheological properties of microcapsules are able to be modified via the synthetic procedures, such as the concentrations of chemicals and interfacial polymerization time. Results show that the physic-chemical properties of biopolymer capsules produced by the microfluidic route are very close for the same generating lot

    Dietary supplementation of Allium mongolicum modulates rumen-hindgut microbial community structure in Simmental calves

    Get PDF
    Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces

    Prolonged administration of total glucosides of paeony improves intestinal immune imbalance and epithelial barrier damage in collagen-induced arthritis rats based on metabolomics-network pharmacology integrated analysis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and joint damage with complex pathological mechanisms. In recent years, many studies have shown that the dysregulation of intestinal mucosal immunity and the damage of the epithelial barrier are closely related to the occurrence of RA. Total glucosides of paeony (TGP) have been used clinically for the treatment of RA in China for decades, while the pharmacological mechanism is still uncertain. The purpose of this study was to investigate the regulatory effect and mechanism of TGP on intestinal immunity and epithelial barrier in RA model rats. The results showed that TGP alleviated immune hyperfunction by regulating the ratio of CD3+, CD4+ and CD8+ in different lymphocyte synthesis sites of the small intestine, including Peyer’s patches (PPs), intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Specially, TGP first exhibited immunomodulatory effects on sites close to the intestinal lumen (IELs and LPLs), and then on PPs far away from the intestinal lumen as the administration time prolonged. Meanwhile, TGP restores the intestinal epithelial barrier by upregulating the ratio of villi height (V)/crypt depth (C) and expression of tight junction proteins (ZO-1, occludin). Finally, the integrated analysis of metabolomics-network pharmacology was also used to explore the possible regulation mechanism of TGP on the intestinal tract. Metabolomics analysis revealed that TGP reversed the intestinal metabolic profile disturbance in CIA rats, and identified 32 biomarkers and 163 corresponding targets; network pharmacology analysis identified 111 potential targets for TGP to treat RA. By intersecting the results of the two, three key targets such as ADA, PNP and TYR were determined. Pharmacological verification experiments showed that the levels of ADA and PNP in the small intestine of CIA rats were significantly increased, while TGP significantly decreased their ADA and PNP levels. In conclusion, purine metabolism may play an important role in the process of TGP improving RA-induced intestinal immune imbalance and impaired epithelial barrier

    High levels of soluble CD25 in COVID-19 severity suggest a divergence between anti-viral and pro-inflammatory T-cell responses

    Get PDF
    Objectives: We aimed to gain an understanding of the paradox of the immunity in COVID-19 patients with T cells showing both functional defects and hyperactivation and enhanced proliferation. Methods: A total of 280 hospitalised patients with COVID-19 were evaluated for cytokine profiles and clinical features including viral shedding. A mouse model of acute infection by lymphocytic choriomeningitis virus (LCMV) was applied to dissect the relationship between immunological, virological and pathological features. The results from the mouse model were validated by published data set of single-cell RNA sequencing (scRNA-seq) of immune cells in bronchoalveolar lavage fluid (BALF) of COVID-19 patients. Results: The levels of soluble CD25 (sCD25), IL-6, IL-8, IL-10 and TNF-α were higher in severe COVID-19 patients than non-severe cases, but only sCD25 was identified as an independent risk factor for disease severity by multivariable binary logistic regression analysis and showed a positive association with the duration of viral shedding. In agreement with the clinical observation, LCMV-infected mice with high levels of sCD25 demonstrated insufficient anti-viral response and delayed viral clearance. The elevation of sCD25 in mice was mainly contributed by the expansion of CD25 CD8 T cells that also expressed the highest level of PD-1 with pro-inflammatory potential. The counterpart human CD25 PD-1 T cells were expanded in BALF of COVID-19 patients with severe disease compared to those with modest disease. Conclusion: These results suggest that high levels of sCD25 in COVID-19 patients probably result from insufficient anti-viral immunity and indicate an expansion of pro-inflammatory T cells that contribute to disease severity.We acknowledge the Biological Resources Facility and Cytometry Facility (Translational Research Institute). This work was supported by the Australian National Health and Medical Research Council (GNT1147769), Eureka TechIN special grant for Immunology and Virology of COVID-19, the Bellberry-Viertel Senior Medical Research Fellowship to DY, and Natural Science Foundation of Shandong Province (Major Basic Program, ZR2020ZD41) to YW
    • 

    corecore