75 research outputs found

    Experimental study of IERSFDs for vibration reduction of gear transmissions

    Get PDF
    Integral elastic ring squeeze film damper (IERSFD) is proposed to reduce and isolate the vibration of the gear transmissions. IERSFD offers the performance of a low radial stiffness and high squeeze film damping. This paper presents a mechanical model of an IERSFD elastic damping support and a single-degree-of-freedom vibration isolation system for the gear system. An open single-stage spur gear system was built to experimentally study the vibration characteristics of gear transmissions with rigid supports and with IERSFD elastic damping supports filled with damping fluids of different viscosities. The experimental results show that the IERSFD can effectively reduce the peak vibration acceleration of the gear shafts and can guarantee the smooth operation of the gear assembly over a range of speeds. This work shows that an IERSFD can reduce the shock and vibration of the gears’ meshing. It effectively attenuates vibration for most of the gears’ frequency components. Within a limited viscosity range, the vibration reduction is more effective with the higher-viscosity IERSFD damping fluids tested

    Research on vibration reduction of multiple parallel gear shafts with ISFD

    Get PDF
    The vibration reduction methods for reducing the complexly coupled vibrations in multiple parallel gear shafts using integral squeeze film damper (ISFD) is studied in this paper. A multiple parallel gear system with three involute spur gears is built, and experiments are carried out to compare the vibrational characteristics of the gear system with rigid support and ISFD elastic damping support. The experimental results show that the ISFD support can reduce the shock vibrations of the multiple parallel gear shafts with excellent vibration attenuation characteristics due to damping. ISFD elastic damping support can inhibit the vibrations in a wide frequency range during the gear transmission, which can guarantee a smooth transition between multiple parallel gear shafts over a range of operating speeds

    Serum Peptidomics

    Get PDF

    Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses

    Get PDF
    h i g h l i g h t s " We propose an optimum blending ratio for co-combustion of tobacco stem and coal. " We examine differences of combustion behaviors between tobacco stem and coal. " Ignition property remains unchanged, but then improves as tobacco stem content rises. " Burnout property improves initially, but worsens as tobacco stem content increases. " Benefits from reductions of CO 2 and SO 2 emissions by blending don't extend to NO 2 . a r t i c l e i n f o b s t r a c t Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0-20% tobacco stem content is conservatively proposed as optimum amount for blending

    Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)

    Get PDF
    Improving cathode performance at a lower Pt loading is critical in commercial PEMFC applications. A novel Pt nanowire (Pt-NW) cathode was developed by in-situ growth of Pt nanowires in carbon matrix consisting Pt nanoparticles (Pt-NPs). Characterization of TEM and XRD shows that the pre-existing Pt-NPs from Pt/C affect Pt-NW morphology and crystallinity and Pt profile crossing the matrix thickness. The cathode with Pt-NP loading of 0.005 mgPt-NP cm−2 and total cathode Pt loading of 0.205 mgPt cm−2 has the specific current density of 89.56 A gPt−1 at 0.9 V, which is about 110% higher than that of 42.58 A gPt−1 of the commercial gas diffusion layer (GDE) with Pt loading of 0.40 mg cm−2. When cell voltage is below 0.48 V, the Pt-NW cathode has better performance than the commercial GDE. It is believed that the excellent performance of the Pt-NW cathode is attributed to Pt-NP induction, therefore producing unique Pt-NW structure and efficient Pt utilization. A Pt-NW growth mechanism was proposed that Pt precursor diffuses into the matrix consisting of pre-existent Pt-NPs by concentration driving, and Pt-NPs provide priority sites for platinum depositing at early stage and facilitate Pt-NW growth

    A comparative analysis of near-infrared image colorization methods for low-power NVIDIA Jetson embedded systems

    Get PDF
    The near-infrared (NIR) image obtained by an NIR camera is a grayscale image that is inconsistent with the human visual spectrum. It can be difficult to perceive the details of a scene from an NIR scene; thus, a method is required to convert them to visible images, providing color and texture information. In addition, a camera produces so much video data that it increases the pressure on the cloud server. Image processing can be done on an edge device, but the computing resources of edge devices are limited, and their power consumption constraints need to be considered. Graphics Processing Unit (GPU)-based NVIDIA Jetson embedded systems offer a considerable advantage over Central Processing Unit (CPU)-based embedded devices in inference speed. For this study, we designed an evaluation system that uses image quality, resource occupancy, and energy consumption metrics to verify the performance of different NIR image colorization methods on low-power NVIDIA Jetson embedded systems for practical applications. The performance of 11 image colorization methods on NIR image datasets was tested on three different configurations of NVIDIA Jetson boards. The experimental results indicate that the Pix2Pix method performs best, with a rate of 27 frames per second on the Jetson Xavier NX. This performance is sufficient to meet the requirements of real-time NIR image colorization
    • …
    corecore