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Response to reviewers 

We thank the Referees for their very helpful comments. We have made revisions and corrections 

according to their comments and suggestions. We have marked all the changes in revised mode in 

the revised manuscript, and made the following responses(Green) to the comments(Black). 

 

Reviewers' comments: 

Reviewer #1: The authors have reported very good work in this manuscript. This 

manuscript may be accepted in the IJHE. More ever, the reviewer observation is 

given here below. 

1)The introduction section is too long, it should be precise and short .  

[Following Reviewer #1's suggestion, the introduction section is refined.] 

2)"Pt nanoparticles pre-existing in the carbon matrix improve growth"… ..Authors 

should justify the reason behind this improvement in terms of reaction kinetics if 

any.  

[In the section 3, the mechanism of Pt nanowires growing on Pt nanoparticle seeds is proposed 

and discussed in the details. Polarization and EIS experiments were carried out to further evaluate 

the cathodes performances(oxygen reduction reaction kinetics).] 

3)"The cathode with Pt-NP loading of 0.005 mgPt-NP cm-2 and total cathode Pt 

loading of 0.205 mgPt cm-2 has the specific current density of 89.56 A gPt -1 at 

0.9V, which is about 110 % higher than that of 42.58 A gPt -1"……. Authors are 

requested to represent the current density with respect to area.  

[Data of the specific current density with respect to area were added in Table 1 in the revised 

manuscript. ] 

4)"our further studies on the matrix materials shows that, comparing with the 4 

carbon matrix, the Pt-NWs growing in a Pt/C matrix displayed shorter length and 

''fluff'' on the carbon support"…..this sentence should be rewrite.  

*Detailed Response to Reviewers
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[The above sentence was rewritten as " Our further studies on effects of the matrix materials 

shows that, comparing with the carbon matrix, the Pt-NWs growing in a Pt/C matrix display 

shorter and denser fluff on the carbon support." in the revised manuscript] 

5)Instead of adding Pt/C , if you add directly only Pt nanoparticles what would 

happen in the growth of Pt NW? Moreover, describe the role of carbon support in 

the Pt-NW growing mechanism. 

[Only Pt nanoparticles cannot achieve on the similar result as the ones supported on carbon. The 

carbon support provides surface to disperses the Pt nanoparticles. Reported from our previous 

work (K Su, Fuel Cells, 2015, 15(3), 449), the Pt-NWs growing in a pure Pt/C matrix are shorter 

and denser fluff than that in a carbon matrix. Therefore, in this paper a mixture of Pt/C and carbon 

was used to alleviate dense Pt-NWs fluff.] 

6)"Nafion® perfluorinated resin solution (ionomer) (DE1020, 10% by wt.)" …… 

Author are requested to write 10 wt.% instead of 10% by wt. to maintained uniform 

style throughout the manuscript. 

[It was corrected in the revised manuscript.] 

7)Authors are requested to check the fuel cell performance using developed 

catalyst at the cathode as well as at the anode. 

[The home-made cathode and the anode were prepared by decal transfer process while all anodes 

are the same made of commercial Pt/C catalyst, which is clearly described in the manuscript. We 

could not understand the reviewer's requirement on checking the fuel cell performance.] 

8)What about the stability for the developed catalyst? 

[As introduced in literature reviewing part, Pt-NWs supported on carbon black are characterized 

for enhanced stability due to their "lower vulnerability to dissolution, Ostwald ripening, and 

aggregation than those of Pt nano particles (NPs).
1,12,14

" in electrochemical cells. We will 

investigate the stability and durability for the developed catalysts in the matrix in fuel cell 

configuration later.] 

9)The comparison of current density of the developed catalyst should be reported 

at the potential rage of 0.4-0.6 V, which is fuel cell operating range under the 

applied load, instead of at 0.9 V. 

[In order to minimize mass transport resistances, the comparison of current density, or activity, of 

the developed catalyst is carried out under high potential range, usual at 0.9V.] 
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10)Form the fig. 5(a) it can be clearly seen that the area under the curve for the H 

adsorption for Pt-NP 0 and Pt-NP 0.005 is almost same. However, the ECSA is 

reported significantly higher for Pt-NP 0.005 as compared to Pt-NP 0, what is 

reason? 

[The electrochemical active surface areas (ECSAs) of Pt nanowires electrodes were 

calculated on the hydrogen absorption area from 0.1 to 0.4 V of the CV data. The three 

peaks for Pt-NP 0, Pt-NP 0.005 and Pt-NP 0.010 are partly overlapping. The areas under 

the curve for the H adsorption for Pt-NP 0 and Pt-NP 0.005 are 0.3905 and 0.4337, 

although they seems almost same. So the calculation results are correct] 

 

Reviewer #2: The introduction is well done and complete, the proposed Pt grow 

mechanism is well justified. The applicative results with the synthesized catalyst are 

not so satisfying when compared to standard commercial material. 

[The polarization curves of various single cells with the commercial GDE and home-made Pt-NW 

cathodes are shown in Fig. 3. The Pt loading ratio of the optimal Pt-NW cathode and the 

commercial cathode is 0.205 mgPt cm
-2

 vs 0.40 mgPt cm
-2

. The home-made electrode is with about 

half loading of the commercial while their cell performance is similar. It is obvious that the former 

is better than the later] 

More effort needs to be put in looking for distinguishing features of this approach 

(durability? chemical degradation? Pt agglomeration reduction?). 

[We will investigate the stability and durability for the developed catalysts in the matrix in fuel 

cell configuration later.] 

The advantage described at low voltage is not representing a real advantage since 

the operating conditions are far from what automotive or stationary fuel cell 

application is looking for (0.6 V minimum). 

[We acknowledge that the present work do not get to its best performance and more space in 

performance improvement can be expected. Due to unusual microstructure of the Pt-NW electrode 

and better performance under high over potential, this can contribute to the electrode design and 

optimization. ]  

Few typos on page 3 (check pt instead of Pt repeated several times). 
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[The typos on page 3 as well as the others in the manuscript were corrected.] 

 

Reviewer #3: The synthesis of Pt NW induced by Pt nanoparticles in Pt/C as 

catalysts for PEM fuel cells is an interesting method to increase the Pt utilization. 

The TEM analysis indicates the uniform growth and sitribution of of Pt NWs and the 

cell performance also indicates the increased utilization efficiency of synthesized Pt 

NW on Pt NP electrodes. However, for fuel cell application, stability of the Pt based 

catalysts is most important, which is not addressed in the paper. 

[Pt-NWs are more stable than Pt nanoparticles both in characteristic structure and experimental 

results reported elsewhere. In present paper, we focus on effects of Pt nanoparticles and the 

Pt-NW growth mechanism related, and will investigate the stability and durability for the 

developed catalysts in the matrix in fuel cell configuration later.] 

The paper is of interesting and important for the development of efficient Pt based 

catalysts for PEMFCs but additional data on Pt NW induced by Pt NPs needs to be 

provided. 

[We investigated the effects of Pt nanoparticles and the matrix thickness on crystal structure, size 

and morphology of Pt-NWs, and compared the Pt-NWs performances with a commercial 

electrode one. This result is sufficient to support our conclusion.] 

 

Reviewer #4: In this paper, the authors present the results of their research dealing 

with Pt nanowire (Pt-NW) cathodes developed by in-situ growth of Pt nanowires in 

carbon matrix containing Pt nanoparticles (Pt-NPs). Physical and analytical 

characterizations were carried out, as well as, the electrochemical characterization 

in single fuel cell. The polarization curves indicate that when cell voltage is below 

0.48V, the Pt-NW cathode has better performance than commercial gas diffusion 

electrode, due to the induction of Pt-NP. Finally, a Pt-NW growth mechanism was 

proposed. 
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First of all, it is worth to mention that the concept of this paper was already 

presented by the authors in previous studies. From this point of view, this job lacks 

of novelty.  

[In the introduction section, we describe how present topic is developed. Inspired by our previous 

work (K Su, Fuel Cells, 2015, 15(3), 449) that Pt-NWs growing in a pure Pt/C matrix are shorter 

and denser fluff than that in a carbon matrix, here a mixture of Pt/C and carbon was used to 

alleviate dense Pt-NWs fluff and the expected results were achieved. Similar investigation was not 

found yet.] 

I guess, the fact that in this work they use Pt nanoparticles as seeds for Pt 

nanowires growth is because this process is not totally controlled. I mean the 

reproducibility and the morphology and dimensions of nanowires. In fact, for me it 

is sufficiently explained how the authors control the Pt nanowires growth. 

[ We could not image how can the reviewer #4 guess that our "process is not totally controlled". In 

fact, the process is so simple and easy. Liking the common CCM process used in MEA preparing 

for PEMFC, a matrix is made by depositing an ink on the electrolyte membrane or a decal transfer, 

and then grow Pt-NWs by wet chemistry. ] 

Moving the electrochemical characterization, polarization curves show that in 

general the performance obtained with the commercial cathode is higher than 

those obtained with the different loadings of Pt-NPs at the cathode; particularly, in 

the practical range of voltage used in PEM fuel cells. 

[The polarization curves of various single cells with the commercial GDE and home-made Pt-NW 

cathodes are shown in Fig. 3. The Pt loading ratio of the optimal Pt-NW cathode and the 

commercial cathode is 0.205 mgPt cm
-2

 vs 0.40 mgPt cm
-2

. The home-made electrode is with about 

half loading of the commercial while their cell performance is similar. It is clear that the former is 

better than the later] 

At this point it is necessary mentioning that no information was provided about the 

commercial gas diffusion electrode. On the other hand, the comparison should be 

carried out with commercial cathode with similar loading and thickness to those 

developed in this work. 
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[The commercial gas diffusion electrode was introduced in the section of experiment methods: 

Gas diffusion layer (GDL) (AvCarb GDS3250) and gas diffusion electrode (GDE) with Pt 

nanoparticle loading of 0.40 mg cm
-2

 were purchased from Ballard Power Systems and 

Johnson Matthey.] 

[As their preparing processes and microstructures are different, the comparison between  

commercial cathode and the home-made one with similar loading and thickness is not suitable. 

For example, the optimal performance of the Pt-NW cathode is achieved at 0.30 mgPt cm
−2

 in the 

Pt loading range of 0.1～0.5 mgPt cm
−2 

, reported by our previous work (Wei Zhaoxu, Int. J. 

Hydrogen Energy, 2015, 40(7): 3068). In this paper, the Pt loading is lowered to about 0.2 mgPt 

cm
-2

] 

Regarding polarization curves showing the effect of carbon loading, the results are 

not consistent with those shown by impedance analysis at 0.4 V. 

[Many thanks for the reviewer's carefulness. It's our mistake. In Fig 4(d), the curve symbols were 

corrected in the resubmitted manuscript. ] 

The assessment of the catalytic activity (see Table 1) at 0.900 V requires at least 

previous correction of the uncompensated cell resistance, which was not 

performed.  

[From Fig 4(a), the ohm resistances for the four samples are 0.102, 0.086, 0.084 and 0.073 ohm 

cm
-2

, which correspond to 1.5, 1.6, 1.1 and 1.2 mV of the potential corrections, and their effects 

are neglected comparing with fuel cell experimental errors.] 

The specific activity in terms of the normalization of geometric current densities by 

the ECSAs should be provided. 

[Data of the specific current density with respect to area were added in Table 1 in the revised 

manuscript. ] 

In addition, the comparison with conventional electrode has to carry out in similar 

conditions. Otherwise, other factors than the Pt loading and electrode thickness 

could affect the obtained values. 

[As their preparing processes and microstructures are different, the comparison between  

commercial cathode and the home-made one with similar loading and thickness is not suitable. 

For example, the optimal performance of the Pt-NW cathode is achieved at 0.30 mgPt cm
−2

 in the 

Pt loading range of 0.1～0.5 mgPt cm
−2 

, reported by our previous work (Wei Zhaoxu, Int. J. 

Hydrogen Energy, 2015, 40(7) : 3068).] 
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All in all, this paper cannot be accepted for publication in International Journal of 

Hydrogen Energy. 

 



Graphical abstract 

 

 

Pt nanoparticles in carbon matrix enhance growth, uniformity and profile of Pt-NWs, and the Pt-NW 

electrodes behave high performance. 

 

Graphical Abstract (for review)



Highlights 

 

1. Pt nanoparticles in the carbon matrix improve uniformity and profile of Pt-NWs. 

2. The novel cathode with 0.205 mgPt cm-2 is comparable to commercial one. 

3. A Pt-NW growth mechanism in the  porous matrix is proposed. 

4. This work provides a strategy for tailoring the electrode architectures. 
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Abstract 

Improving cathode performance at a lower Pt loading is critical in commercial PEMFC 

applications. A novel Pt nanowire (Pt-NW) cathode was developed by in-situ growth of Pt 

nanowires in carbon matrix consisting Pt nanoparticles (Pt-NPs). Characterization of TEM 

and XRD shows that the pre-existing Pt-NPs from Pt/C affect Pt-NW morphology and 

crystallinity and Pt profile crossing the matrix thickness. The cathode with Pt-NP loading of 

0.005 mgPt-NP cm-2 and total cathode Pt loading of 0.205 mgPt cm-2 has the specific current 

density of 89.56 A gPt
-1 at 0.9V, which is about 110 % higher than that of 42.58 A gPt

-1  of the 

commercial gas diffusion layer (GDE) with Pt loading of 0.40 mg cm-2. When cell voltage is 

below 0.48V, the Pt-NW cathode has better performance than the commercial GDE. It is 

believed that the excellent performance of the Pt-NW cathode is attributed to Pt-NP 

induction, therefore producing unique Pt-NW structure and efficient Pt utilization. A Pt-NW 

growth mechanism was proposed that Pt precursor diffuses into the matrix consisting of 

pre-existent Pt-NPs by concentration driving, and Pt-NPs provide priority sites for platinum 

depositing at early stage and facilitate Pt-NW growth. 

 

Keywords 

Pt nanowire; Cathode; PEMFC; Growth; Tailoring; Architecture. 
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Introduction 

Hydrogen fuel cells give a choice of ultimate energy solution and attract more and more attentions in 

recent years.  Among all kinds of fuel cells, Polymer Electrolyte Membrane Fuel Cell (PEMFC) is in the 

overwhelming position that is well developed and applied in the fields of vehicles, combined heat and 

power (CHP) systems, backup powers and power plans, etc. However, the sluggish oxygen reduction 

reaction (ORR) at the cathode results in a high Pt loading (currently in the range of 0.30.4 mg Pt cm
-2

) 

used which lead to high cost to the end users. To address this challenge, accelerating the ORR at a lower 

Pt loading without sacrificing performance is critical and has been pursued for decades.
1,2

 

Until now, Pt-based electrocatalysts are practically the dominant choice in PEM fuel cells, and are mainly 

catalogued into the pure platinum, platinum alloys and core-shell structures. 
1-8

 To reduce expensive 

platinum loading and improve electrocatlytic kinetics, the ability to tailor nanostructure of 

electrocatalysts is critical in order to tune their geometry and electronics state.
1-3,7

 Many fine structures, 

for example, Pt surface-enriched shell-core, single or multiple atom layers, multilayer alloy materials, Pt 

nanocage or Pt hollow, are synthesized or designed and investigated.
2-10

 Huang et al developed a 

Mo-Pt3Ni/C alloy showed the best ORR performance, with a specific activity of 10.3 mA cm
-2

 and mass 

activity of 6.98 A mgPt
-1

, which are 81- and 73-fold enhancements respectively compared with the 

commercial Pt/C catalyst (0.127 mA cm
-2

 and 0.096 A mgPt
-1

) .
2
 A polycrystalline Pt5Pr alloy was prepared, 

which demonstrates ~4-fold improvement over pure Pt, comparable to that of polycrystalline Pt3Ni and 

many other polycrystalline Pt-alloys.
4
 The issues for mass production arise due to the complicated 

processes and parameter sensibility and make them difficult in quality control in engineering, or practical 

applications have been limited by catalytic activity and durability.
1,2

 

One- and two-dimensional nanomaterials with all the atoms exposed for modification act as ideal 

platforms for tailoring their properties and decreasing material costs .
11-14

 The prominent characteristics 

of Pt nanowires ( Pt-NWs) include dominant (111) facets, less lattice boundaries, a lower number of 

surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower 

vulnerability to dissolution, Ostwald ripening, and aggregation than Pt nano particles (NPs) for enhanced 

stability.
1,12,14

 High Pt content catalyst (such as 70% Pt/C) is favourable for improving fuel cell 

performance.
15

 Comapring with Pt nanoparticle preparing, Pt NWs can be easily prepared by template 

method or template-free method. Meng et al
16

 reported factors Influencing the growth of Pt Nanowires 

on the template-free synthesis of Pt nanowires via the chemical reduction of Pt salt precursors with 

formic-acid. Liang et al
17

 used ultrathin Te@C nano cables with a very high aspect ratio as templates to 

form Pt@C nanocables by the galvanic replacement reaction. Kim et al
18

 developed a nanowire network 

catalyst that was made of highly-dispersed Pt nanoparticles into electrospun Pt nanowire network 

architecture. 

A new type of bimetallic nanowires (PtCo, PtNi, PtFe, etc.) have been developed by wet chemical 

synthesis procedure and showed high electrocatalytic activity. A bimetallic PtCo-NW/C nanostructures 
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possess the lowest Tafel slope, mass activity and near four-electron reduction kinetics for direct 

conversion of oxygen to water.
19

 Xia et al
13

 reported an effective solvothermal method for the direct 

preparation of 3D PtCo nanowire assemblies (NWAs) with tuneable composition. The mass activity of 

Pt59Ni41 NWs is increased by a factor of 1.9 times in comparison with that of Pt NWs, and 3.7 times with 

that of commercial Pt (0.09 A mgPt
-1

), and the higher catalytic activity and stability of Pt59Ni41 NWs for 

the ORR is attributed as a result of the composition dependent atomic-scale alloying and faceting 

properties.
20

 Recently, a new class of Pt3Fe zigzaglike nanowires (Pt-skin Pt3Fe z-NWs) with stable 

high-index facets (HIFs) and nanosegregated Pt-skin structure is reported. Pt-skin Pt3Fe z-NWs with a 

mass activity of 2.11 A mgPt
−1

 and a specific activity of 4.34 mA cm
−2

 for the oxygen reduction reaction 

(ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest values in all reported 

PtFe-based ORR catalysts.
21

 

For many years, the process of the nucleation and growth of nanoparticles have been depicted by the 

LaMer burst nucleation and following Ostwald ripening to describe the change in the particles size. 

Watzky and Finke formulated an approach of constant slow nucleation followed by autocatalytic 

growth.
22

 Gao et al found that electrochemical deposition at a constant potential can overgrow Pt seeds, 

which are wet chemically synthesized Pt nanoparticles seeded homogeneously on diamond surface.
23

 

Simona et al proposed an oriented attachment growth Mechanism for silver nanowire formation.
24

 

Whatever, the nucleation and growth mechanisms behind the simple chemistry are extremely 

complicated.
25

 

To boost electrocatalyst rule, optimal 3D architectures of the supports and electrodes are important to achieve 

efficient pt utilization and high performance in PEMFC environment as the current density of the catalyst layer is 

only 1/10th that if all of the transport rates are infinitely fast.
26,27

 For constructing 3D electrode architecture, a 

freeze-drying/reduction process was suggested and demonstrated ultra-high pt utilization.
28

 An aqueous 

suspension of GO (graphene oxide) sheets, pt precursor and nafion ionomers was spread onto a GDL, then 

freeze-dryed and reduced while the pt precursor and go sheets were reduced to metallic pt and graphene, 

respectively. Novel fuel cell nanofibrous electrodes (NFEs) based on self-standing electrospun carbon nanofibre 

webs covered by platinum ultrathin nanoislands deposited by high overpotential pulsed electrodeposition.
29

 

These structured electrocatalyst layers have high electrical conductivity for fast charge transport and sufficient 

macroporosity for efficient reactant mass transportation. 

Our previous work designed firstly a porous carbon matrix and grew directly pt nanowires in the pore 

walls of the matrix, forming a so called “Pt nanowire electrode” where the Pt nanowire morphology and 

distribution in the catalyst layer can be adjusted by process parameters.
3,30,31

 The “Pt nanowire 

electrode” realized truly a 3D architecture as Pt-NWs growing directly on the pore wall and hence almost 

100% Pt exposed to oxidant. Our further studies on effects of the matrix materials shows that, 

comparing with the carbon matrix, the Pt-NWs growing in a Pt/C matrix display shorter and denser fluff 

on the carbon support.
32

 This reminds us that the Pt nanoparticles supported on carbon are evolved into 
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Pt nanowires and consequently can be  favourable sites for Pt-NW growing. Following above idea, here 

we introduced small amount of Pt-NPs into the carbon matrix for controlling Pt-NW growth and profile, 

and demonstrated that the home-made electrode performance was greatly improved. Measurements of 

TEM, XRD, single fuel cell performance, electrochemical impedance spectrum (EIS) and cyclic 

voltammogram (CV) were used to characterize effects of the pre-existing Pt nanoparticles (Pt-NP) from 

Pt/C. Finally, a Pt-NW growing mechanism was proposed. 

Experiment methods 

 

Chemicals and materials 

20wt% Pt/C (HiSPEC
TM

 3000) and 40wt% Pt/C (HiSPEC
TM

 4000) from Johnson Matthey; isopropanol 

((CH3)2CHOH), formic acid (HCOOH), and chloroplatinic acid hexahydrate (H2PtCl6 ˑ 6H2O) from 

Sinopharm Chem. Reagent; commercial carbon black (Vulcan XC-72R) from Shanghai Cabot Chemical; 

Nafion® perfluorinated resin solution (ionomer) (DE1020, 10 wt. %) and Nafion® membrane (NR212, 

50μm thickness) from DuPont. All of the above reagents and materials were used as-received without 

any further purification/treatment. The ultrapure water (18.2 MΩ) for preparing solution and cleaning Pt 

nanowires electrodes was obtained from the National Key Laboratory of Science and Technology on 

Micro/Nano Fabrication (NSTmnF) at Shanghai Jiao Tong University. The decal substrate was a glass-fiber 

contexture coated with polytetrafluoroethylene (PTFE) (ultra-premium grade) from CS Hyde Company. 

Gas diffusion layer (GDL) (AvCarb GDS3250) and gas diffusion electrode (GDE) with Pt nanoparticle 

loading of 0.40 mg cm
-2

 were purchased from Ballard Power Systems and Johnson Matthey, respectively. 

High purity hydrogen (99.999%), air (99.999%) and nitrogen (99.999%) were cylinder gases.  

Pt nanowires growing promoted by Pt seeds 

Similar with our previous works,
32

 Pt-nanowires electrodes were prepared by in-situ Pt-nanowires 

growing in a carbon matrix, which is about 4~10μm layer of carbon powders adhered by Nafion® resin on 

a transfer substrate, via Pt persecutor reducing and then depositing in. Here, instead of pure carbon 

black, part of carbon black was substituted with 20wt% Pt/C, where the Pt nanoparticles serve as seeds 

for promoting Pt nanowires growth. Typically, a matrix ink was prepared by blending 20wt% Pt/C, 

commercial carbon black, Nafion® resin solution and isopropanol (Pt/C+C: ionomer=4:1, weight basis), 

then sonicated for 5 min. The ink was sprayed onto a decal substrate with an airbrush gun (Iwata HP-CH) 

at 50~60℃ under an infrared light. Subsequently, the substrate was fixed on the bottom of a glass Petri 

dish with narrow stick tapes. 1mM chloroplatinic acid hexahydrate and formic acid solution were added 

to the dish in 2 hours and platinum slowly reduced, deposited and grew into Pt nanowires. After 48h, the 

substrate grown with Pt nanowires was taken out and rinsed for three times and immersed in deionized 

water for 24 hours to remove the remained ions, and then dried at 50℃ for 30min. Finally, a diluted 

ionomer solution (0.2% by wt.) was sprayed onto the surface of the catalyst layer at an amount of 0.10 
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mg cm
-2

 and dried at 50℃ for 2 hours. This Pt nanowires decal was used as cathode catalyst layer in the 

following section. 

 

Membrane electrode assembled (MEA) fabrication and single cell polarization tests 

An anode decal was prepared with commercial Pt/C catalyst. The well mixed ink of 40 wt% Pt/C catalyst, 

Nafion® ionomer solution and isopropanol was sprayed onto a substrate with Pt and Nafion® ionomer 

loadings fixed at 0.30 and 0.10 mg cm
-2

, respectively. Then the anode decal was dried at 50℃ for 2 

hours. 

A pair of the anode decal and the cathode decal were respectively placed on each side of a Nafion® 

NR212 electrolyte membrane and hot-pressed at 145℃ for 3 mins under 0.4 MPa. After cooling to room 

temperature, the decal substrates were peeled off and a MEA was made. For comparison, a commercial 

gas diffusion electrode (GDE) with Pt loading of 0.40 mg cm
-2

 as a cathode was used to fabricate a MEA 

under the same hot-pressing conditions as above.  

In this paper, the deposited Pt-NW loading was fixed at 0.20 mg Pt cm
-2

. Pt/C (20 % Pt) loadings were 

varied from 0 to 0.050 mg (Pt/C) cm
-2

 where the pre-exiting Pt nano-particles are named as Pt-NPs and 

the Pt-NP loadings correspond to from 0 to 0.010 mgPt-NP cm
-2

, while the blank carbon content fixed at 

0.20 mgC cm
-2

. In carbon content investigation, the carbon loadings were varied with 0.10, 0.20 and 0.30 

mgC cm
-2

, meanwhile the Pt seed loading was fixed at 0.025 mgPt/C cm
-2

or 0.005 mgPt-NP cm
-2

. 

The MEAs with 10 cm
2
 active area were inserted into graphite field plates with serpentine gas flow channels to 

assemble single cell units. The single cell units were assembled in the order of graphite field plate − sealing gasket 

– GDL – MEA – GDL − sealing gasket − graphite field plate, and were evaluated with an 850e Multi-Range Fuel Cell 

Test System (Scribner Associates Inc.). The MEAs were activated firstly with a program used in our previous 

work.
31

 The temperatures of the fuel cell and two humidifiers were keeping at 70℃ and 65℃, respectively. The 

stoichiometric ratios of hydrogen feeding and air feeding were 1.5 and 2.0, respectively. The back pressures were 

1.0 bar at both sides. Polarization curves were recorded by voltage sweeping from open circuit voltage (OCV) to 

0.30 V at a rate of 2 mV s
-1

. 

Characterizations 

The cross-sectional morphologies of the Pt nanowire electrodes were observed by a transmission 

electron microscope (TEM) (2100F, JEOL) operating at an accelerating voltage of 200 kV. The TEM 

samples were prepared by slicing the MEA strips embedded in the solidified epoxy resin. X-ray diffraction 

(XRD) patterns were recorded by a Rigaku D/max-2200/PC instrument using CuKα radiation (λ=1.54056 

Å) generated at 40 KV and 30 mA between 20° and 90° (2θ). The XRD samples of the Pt nanowires 

electrodes were peeled off from the MEAs. The Pt loadings of the catalyst layers were determined by 

inductively coupled plasma-atomic emission spectrometer (ICP-AES) (7500a, Agilent). 
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Cyclic voltammogram (CV) curves and electrochemical impedance spectra (EIS) spectrums were 

characterized in a two-electrode configuration (single cell). CV measurements on an electrochemical 

interface instrument (SI1287, Solartron Analytical Inc.) were recorded by voltage sweeping from 0.05 V 

to 1.00 V at 25mV s
-1 

with 300 sccm hydrogen and 75 sccm nitrogen being supplied to the anode and 

cathode, respectively. The temperatures of the cell and the humidifiers were all 35℃. The 

electrochemical active surface areas (ECSAs) of Pt nanowires electrodes were calculated on the hydrogen 

absorption area from 0.1 to 0.4 V of the CV data, assuming that 210 µC cm
-2

 was needed to form a 

monolayer of absorbed H on polycrystalline Pt surface.
34

 After the polarization tests, EIS tests with 885 

Fuel Cell Potentiostat (Scribner Associates Inc.) were conducted at the potentials of 0.80 V and 0.40 V in 

a frequency range of 10 kHz0.1 Hz with the AC amplitude of 10% DC current, and the test conditions 

were the same as those in the polarization measurements. 

 

Results and discussion 

Morphology and structure characterizations 

Pt nanowires morphology was examined by TEM image analysis. To prepare TEM samples, after tested the single 

cells were dispatched and the MEAs were embedded in epoxy resin, and then sliced into the strips after 

solidified. For comparison, the TEM images in the region near the GDLs were taken up, where the Pt-NW 

contents were the lowest as the gradient Pt-NW distribution across the cathode thickness.
31

 As shown in Fig. 1b, 

1c, pre-existing Pt-NPs greatly improve growing uniformity of the Pt nanowires by comparing with pure carbon 

case in Fig. 1a. This is due to that the pre-existing Pt nanoparticles not only provide low energy interfaces for Pt 

nucleation, trigger the nucleation and anisotropic growth of the Pt-NPs liking Au
35

 or Pd seeds
36

, but also may act 

as catalyst for the Pt reduction reaction. It was reported that Pd nanoparticles on the beads (a substrate) could 

acted as catalytic sites for the anisotropic Pt growth, and once the growth was initiated, the Pt nanowires 

continually grew in the <111> direction until the supply of Pt
0
 atoms was depleted.

37
 It can be found obviously in 

the high-resolution TEM insets of Fig. 1(a)(c) that with increasing the Pt nanoparticles in the carbon matrix the 

Pt-NWs are shorter and evenly tends unordered. This proves the existent Pt-NPs functioned as growing sites for 

Pt nanowires. 

Fig.1 

To illustrate the effect of Pt-NPs on Pt-NW crystallinity, the XRD patterns of the Pt nanowire electrodes with the 

Pt-NP loadings of 0, 0.005 and 0.010mgPt-NP cm
-2

 were measured and shown in Fig. 2. All XRD patterns of the 

samples are similar with bulk platinum and Pt characteristic peaks appear at 2θ of 39.8°, 46.3°, 67.5° and 81.6°, 

respectively corresponding to the (111), (200), (220), and (311) facets. The samples at the Pt-NP loadings of 0 and 

0.005 mgPt cm
-2

 have sharp and intense peaks of the (111) facet, which means perfect crystallinity and dominant 

(111) facets. However, more seeds liking the Pt-NP loading of 0.010 mg cm
-2

 introduce more growing sites, and 

lead less crystallinity or amorphous structure, which is again in well agreement with the above TEM analysis.  
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Fig. 2 

The carbon matrix thickness, which linearly increases with carbon loadings, affected Pt nanowire distribution as 

Pt precursor diffuses into through the matrix micro-pores from the bulk solution. To examine Pt nanowire 

dispersions of various carbon loadings of 0.10, 0.20 and 0.30 mgC cm
-2

, the TEM images near the GDLs region 

were photographed, where the least Pt nanowires were formed as the lowest concentrations of Pt precursor. 

The diffusion effect of formic acid can be ignored as it is extremely excessive (>100 stoichiometric ratio).  As 

shown in Fig. 1(d) (f), the sample with the highest carbon loading of 0.30 mgC cm
-2 

has the thickest catalyst layer 

and the least Pt-NWs in the region near the GDE. By comparing with blank carbon as shown in Fig. 1(a), the 

Pt-NPs improve uniformity of Pt nanowires growing along the Pt-NW matrix thickness as depth as >10μm (i.e. 

carbon loading of 0.30 mgC cm
-2

).  

Single cell performances improved by Pt nanoparticles 

The polarization curves of various single cells with the commercial GDE and home-made Pt-NW cathodes are 

shown in Fig. 3. The Pt-NP loading of the Pt-NW cathodes is varied from 0 to 0.010 mgPt-NP cm
-2 

as shown in Fig. 

3(a). The optimal Pt-NP loading is obtained at 0.005 mgPt-NP cm
-2

 with the current density 1.29 A cm
-2 

at 0.60 V. 

Comparing the cell performances of the commercial GDE and the optimal Pt-NW cathode, there is a crossing 

point at cell voltage of 0.48 V. When the voltage is below 0.48V, the optimal Pt-NW cathode has better 

performance, i.e. lower concentration polarization loss, for example, its current density at 0.30 V is 7% higher 

than that of the commercial GDE. The lower concentration polarization is accredited to the Pt-NWs openly 

exposed to oxidant, not liking that in the conventional electrodes part of Pt nanoparticles lost in the dead pores 

or very narrow pores and cannot be accessed. On the other hand, at a higher voltage over 0.48 V, the 

performance of the Pt-NW cathode is slightly lower, for example, its current density at 0.60 V is about 5% lower 

than that of the commercial GDE. This poorer performance of the Pt-NW cathode at high voltage range may be 

due to its lower Pt catalyst loading,
38

 where the Pt loading ratio of the optimal Pt-NW cathode and  the 

commercial cathode is 0.205 mgPt cm
-2

 vs 0.40 mgPt cm
-2

. 

Fig. 3 

EIS experiments were carried out to further evaluate the cathodes performances. Fig. 4(a) and 4(b) shows the EIS 

results of various Pt-NP loadings at the cell voltages of 0.80 and 0.40 V, respectively. At 0.80 V, due to the lower 

current density, the cathode impedances are dominated by the charge transfer resistances which are 

represented by the arc diameters in the Nyquist plots. The commercial GDE exhibits the smallest arc diameter, 

indicating the smallest charge transfer resistance and the best ORR kinetics, which corresponding to the highest 

current density in the high voltage range. Meanwhile, among the Pt-NW cathodes, the Pt-NW cathode with 0.005 

mgPt-NP cm
-2

 has the smallest charge transfer resistance, even if its Pt loading is less than that of the cathode with 

0.010 mgPt-NP cm
-2

. This is due to more active (111) facets of the former supported by Fig. 2. At 0.40 V, there are 

two semi-circles for all samples. The high frequency arc (left) is attributed to the charge transfer impedance and 

double layer capacitance, and the low frequency arc (right) is related with the mass transfer resistance.
39

 The 

cathode with 0.005 mgPt-NP cm
-2

 has the smallest diameter of low frequency arc compared with all the other 
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samples, even including the commercial GDE, confirming the smallest mass transfer resistance and best 

performance. 

Fig. 4 

The Pt-NP effect on the CV curves and ECSA values of the Pt-NW cathodes are illustrated in Fig. 5(a). The ECSA 

value increases with the Pt-NP loading, and the maximum value of 41.94 m
2
 gPt

-1
 is achieved at a Pt-NP loading of 

0.010 mgPt-NP cm
-2

, and the minimum value of 36.72 m
2
 gPt

-1
 at no Pt-NPs added. This trend meets with the results 

from TEM images in Fig. 1(a) (c) and XRD patterns in Fig. 2. The increase of the ESCA value with Pt-NP loading 

can be attributed to the more growing/depositing sites, and therefore the Pt-NW length and the catalyst 

aggregation is decreased. However, at a high Pt-NP loading, such as 0.010 mgPt-NP cm
-2

, the excessive growing 

sites lead to lower Pt-NW crystallinity, presenting an indistinct crystallographic alignment as shown in the inset of 

Fig.1c, and finally resulting in a large charge transfer resistance and a low ORR activity. 

Fig. 5 

Effects of matrix carbon loadings on single cell performance  

The carbon loading in the matrix determines the cathode thickness, and there is a linear relationship between 

them.
40

 There is a balance between the mass transfer resistance and Pt-NW aggregation. Performance curves of 

the Pt-NW cathodes with different carbon loadings are shown in Fig. 3(b). The performance curves of the Pt-NW 

cathode with 0.10 mgC cm
-2

 and 0.20 mgC cm
-2

 are quite similar, for example, their current densities at 0.60 V are 

about 1.35 A cm
-2

. Among the Pt-NW cathodes, the 0.10mgC cm
-2

 one is the highest power density at the cell 

voltage > 0.53V, while the 0.20 mgC cm
-2

 one the best at the cell voltage < 0.53V. The Pt-NW cathode with 0.30 

mgC cm
-2

 exhibits the poorest performance, which means that the thick cathode causes deleterious mass transfer 

polarization. 

The EIS results of the Pt-NW cathodes with different carbon loadings are illustrated in Fig. 4(c) and 4(d). It can be 

seen that, the cathode with 0.10 mgC cm
-2

 has the smallest impedance at 0.80 V while one with 0.3 mgC cm
-2 

has 

the largest impedance at 0.40 V, suggesting their smallest charge transfer resistance and the largest mass 

transfer resistance, respectively. The cathode with 0.20 mgC cm
-2

 exhibits the smallest mass transfer resistance at 

0.40V. Hence, the 0.20 mgC cm
-2

 one has an optimal performance at low voltage range. 

To further investigate the effect of carbon contents, the cycle voltammograms were recorded to evaluate the 

electrode ECSAs, and the results are presented in Fig. 5(b). The maximum ECSA value is 58.06 m
2
 gPt

-1
 obtained at 

0.10 mgC cm
-2

, and drops to 27.85 m
2
 gPt

-1
 when the carbon loading is 0.30 mgC cm

-2
. This can reason that the 

ionomer sprayed cannot reach on the deep Pt-NWs which could not contribute to electrochemistry. The value of 

58.06 m
2
 gPt

-1
 is even higher than that of 47.0m

2
 gPt

-1
 of the conventional Pt/C electrode reported in our previous 

work.
30

 However, except of ECSA, the cathode reaction also depends on conductivity and oxygen supplying. 

Therefore, the optimal carbon loading is 0.20 mgC cm
-2

. 

Pt efficiency comparing  
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Catalyst activity measurements of MEAs are generally evaluated using H2/O2 reactants in order to minimize mass 

transport resistances.
41

 To comparing Pt efficiency under real H2/air operating conditions, here the current 

density data at 0.9 V were taken and the specific current densities (SCDs) on Pt mass basis were calculated 

according to the data from Fig. 3(a). The SCDs of the home-made Pt-NW cathodes with Pt seeds loadings of 0, 

0.005, and 0.010 mgPt-NP cm
-2

 and the commercial GDE are summarized in Table 1. The Pt-NW cathode with 0.005 

mgPt-NP cm
-2

 has the highest SCD value of 89.56 A gPt
-1

, which is 47 % higher than 60.95 A gPt
-1

 of the 0.010 mgPt-NP 

cm
-2

 one and 110% higher than 42.58 A gPt
-1 

of the commercial GDE. The 0.005 mgPt-NP cm
-2

 one has the optimal 

catalyst utilization, although its ECSA value is a little smaller than that of the 0.010 mgPt-NP cm
-2

 sample. The SCD 

value of the commercial GDE is the smallest, and is less half of the 0.005 mg Pt-NP cm
-2

 sample. The high Pt 

efficiency of the Pt-NW cathodes is according to:  i) Pt-NWs grow directly on the pore wall almost with no 

hiding; ii) P-NP seeds induce uniform growing of Pt-NWs; and iii) dominant (111) facets with high catalytic activity 

for oxygen reduction reaction (ORR).  

Table 1 

Mechanism of Pt nanowires growing on Pt nanoparticle seeds 

There are many mechanisms of nucleation and growth in solutions such as LaMer nucleation, 

Finke-Watzky two step mechanism, Ostwald ripening, digestive ripening, coalescence and orientated 

attachment, and intra-particle growth.
28

 However, these mechanisms are in conflicts or inverse with 

some others, for example, the nucleation and growth could occur simultaneously by Finke-Watzky 

mechanism or separately by LaMer mechanism. Cheong et al
42 

investigated the precursor concentrations 

effects by in situ and ex situ methods and found the low concentration growth occurs at a relatively slow 

rate and yields faceted morphologies, are characteristic of a thermodynamically controlled regime. It is 

thought that incomplete reduction of AuCl precursor allows only a part of it to transform to Au, which 

can seed nanowire growth.
43

 Meng et al
16

 demonstrated that both formate as the intermediate species 

and HCOOH in the reacting solution (PH=1.53.5) are significantly important, while formate reduces the 

Pt salt and HCOOH block all Pt surfaces except Pt (111) facets. 

The catalytic phenomena of Pt-NP seeds was observed obviously in present experimental. When Pt-NPs 

(supported on carbon) added in the matrix, the color of the solution containing Pt precursor fades from 

light yellow to colorless in less than 12hrs, comparing that more than 24hrs without Pt-NPs. The 

proposed schematic of Pt nanowires growth mechanism in the carbon matrix is illustrated in Fig. 6. It is 

assumed that the platinum precursors and formic acid diffuse into the the matrix consisting of carbon 

powders and Pt-NPs bonded by ionomer. Then the Pt seeds facilitate platinum precursor reduction and 

provide depositing sites for the newly formed Pt atoms which are nearly layer-by-layer monomer 

addition onto the crystallite faces to yield stable morphology. Except of reducing function, overwhelming 

formic acid also serves for capping agent, therefore platinum atoms add onto the (111) facet and  the 

sole nanowire morphology were produced. Concentration difference of platinum precursor, driving from 

the bulk into the matrix through the micro pores, leads to a gradient Pt-NW profile. Nanocrystal growth 
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in the low concentration reaction, here 1mM chloroplatinic acid hexahydrate adopted, occurs under 

thermodynamic control.
42

 Here weak reducing agent, low concentrations of the reactants and low 

temperature ensure a slow reaction rate. Formic acid as capping agent plays an important role and 

promotes an anisotropy growth along (111) facets.
16

 On the other hand, catalytic and seed functions of 

Pt-NPs induce Pt atoms deposited preferentially on the Pt-NPs, not carbon particles, and result in 

relatively progressive gradient or better uniformity along the matrix thickness. It was evidenced by the 

results of the TEM images and XRD patterns as shown in Fig. 1(a)(c) and Fig. 2, where the more Pt-NP 

seeds, the shorter nanowires at the same Pt depositing amount.  

Fig. 6 

Conclusions 

In summary, a novel Pt-NW cathode with low Pt loading was developed by introducing Pt nanoparticles (Pt-NPs) 

into a carbon matrix and in-situ growing Pt nanowires. The pre-exiting Pt nanoparticles provide low energy 

interfaces for Pt nucleation and thus induce the Pt nanowire growth, therefore avoid the Pt nanowire 

aggregation. However, excessive Pt nanoparticles decrease length and crystallinity of the Pt nanowires, even if 

resulting in an amorphous structure. The carbon loading in the matrix dominates the matrix thickness and Pt 

profile. The optimal Pt-NW cathode is with Pt-NP loading of 0.005 mgPt-NP cm
-2

 and carbon loading of 0.02 mgC 

cm
-2

, respectively. The optimal cathode with total cathode Pt loading of 0.205 mg cm
-2

 has the highest specific 

current density of 89.56 A gPt
 -1 

at 0.9V under air/H2 feeding, which is about 110% higher than that of the 

commercial GDE with Pt loading of 0.40 mg cm
-2

. When the cell voltage is below 0.48V, the optimal Pt-NW 

cathode has better performance than the commercial GDE. Good performance of the Pt-NW cathodes was 

attributed to i) uniform Pt-NW growth induced by Pt-NPs; ii) high Pt utilization as Pt-NWs growing directly on the 

pore wall and hence fully exposed to oxidant iii) dominant (111) facets of the Pt-NWs with high ORR catalytic 

activity. A Pt-NW growth mechanism was proposed that Pt precursor diffuses into the matrix of pre-existing 

Pt-NPs by concentration driving, and Pt-NPs as seeds induce Pt-NW growth kinetics and provide priority sites for 

platinum depositing. This work provides a new strategy for tailoring Pt-NW nanostructures and designing the 

electrode architectures, and can be extend to the other electrocatalysts of alloys or alloying nanowires. 
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Abstract 

Improving cathode performance at a lower Pt loading is critical in commercial PEMFC 

applications. A novel Pt nanowire (Pt-NW) cathode was developed by in-situ growth of Pt 

nanowires in carbon matrix consisting Pt nanoparticles (Pt-NPs). Characterization of TEM 

and XRD shows that the pre-existing Pt-NPs from Pt/C affect Pt-NW morphology and 

crystallinity and Pt profile crossing the matrix thickness. The cathode with Pt-NP loading of 

0.005 mgPt-NP cm-2 and total cathode Pt loading of 0.205 mgPt cm-2 has the specific current 

density of 89.56 A gPt
-1 at 0.9V, which is about 110 % higher than that of 42.58 A gPt

-1  of the 

commercial gas diffusion layer (GDE) with Pt loading of 0.40 mg cm-2. When cell voltage is 

below 0.48V, the Pt-NW cathode has better performance than the commercial GDE. It is 

believed that the excellent performance of the Pt-NW cathode is attributed to Pt-NP 

induction, therefore producing unique Pt-NW structure and efficient Pt utilization. A Pt-NW 

growth mechanism was proposed that Pt precursor diffuses into the matrix consisting of 

pre-existent Pt-NPs by concentration driving, and Pt-NPs provide priority sites for platinum 

depositing at early stage and facilitate Pt-NW growth. 
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*Manscript (Changes Marked)



2 

 

Introduction 

Hydrogen fuel cells give a choice of ultimate energy solution and attract more and more attentions in 

recent years.  Among all kinds of fuel cells, Polymer Electrolyte Membrane Fuel Cell (PEMFC) is in the 

overwhelming position that is well developed and applied in the fields of vehicles, combined heat and 

power (CHP) systems, backup powers and power plans, etc. However, the sluggish oxygen reduction 

reaction (ORR) at the cathode results in a high Pt loading (currently in the range of 0.30.4 mg Pt cm
-2

) 

used which lead to high cost to the end users. To address this challenge, accelerating the ORR at a lower 

Pt loading without sacrificing performance is critical and has been pursued for decades.
1,2

 

Until now, Pt-based electrocatalysts are practically the dominant choice in PEM fuel cells, and are mainly 

catalogued into the pure platinum, platinum alloys and core-shell structures. 
1-8

 To reduce expensive 

platinum loading and improve electrocatlytic kinetics, the ability to tailor nanostructure of 

electrocatalysts is critical in order to tune their geometry and electronics state.
1-3,7

 Many fine structures, 

for example, Pt surface-enriched shell-core, single or multiple atom layers, multilayer alloy materials, Pt 

nanocage or Pt hollow, are synthesized or designed and investigated.
2-10

 Huang et al developed a 

Mo-Pt3Ni/C alloy showed the best ORR performance, with a specific activity of 10.3 mA cm
-2

 and mass 

activity of 6.98 A mgPt
-1

, which are 81- and 73-fold enhancements respectively compared with the 

commercial Pt/C catalyst (0.127 mA cm
-2

 and 0.096 A mgPt
-1

) .
2
 A polycrystalline Pt5Pr alloy was prepared, 

which demonstrates ~4-fold improvement over pure Pt, comparable to that of polycrystalline Pt3Ni and 

many other polycrystalline Pt-alloys.
4
 The issues for mass production arise due to the complicated 

processes and parameter sensibility and make them difficult in quality control in engineering, or practical 

applications have been limited by catalytic activity and durability.
1,2

 

One- and two-dimensional nanomaterials with all the atoms exposed for modification act as ideal 

platforms for tailoring their properties and decreasing material costs .
11-14

 The prominent characteristics 

of Pt nanowires ( Pt-NWs) include dominant (111) facets, less lattice boundaries, a lower number of 

surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower 

vulnerability to dissolution, Ostwald ripening, and aggregation than Pt nano particles (NPs) for enhanced 

stability.
1,12,14

 High Pt content catalyst (such as 70% Pt/C) is favourable for improving fuel cell 

performance.
15

 Comapring with Pt nanoparticle preparing, Pt NWs can be easily prepared by template 

method or template-free method. Meng et al
16

 reported factors Influencing the growth of Pt Nanowires 

on the template-free synthesis of Pt nanowires via the chemical reduction of Pt salt precursors with 

formic-acid. Liang et al
17

 used ultrathin Te@C nano cables with a very high aspect ratio as templates to 

form Pt@C nanocables by the galvanic replacement reaction. Kim et al
18

 developed a nanowire network 

catalyst that was made of highly-dispersed Pt nanoparticles into electrospun Pt nanowire network 

architecture. 

A new type of bimetallic nanowires (PtCo, PtNi, PtFe, etc.) have been developed by wet chemical 

synthesis procedure and showed high electrocatalytic activity. A bimetallic PtCo-NW/C nanostructures 
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possess the lowest Tafel slope, mass activity and near four-electron reduction kinetics for direct 

conversion of oxygen to water.
19

 Xia et al
13

 reported an effective solvothermal method for the direct 

preparation of 3D PtCo nanowire assemblies (NWAs) with tuneable composition. The mass activity of 

Pt59Ni41 NWs is increased by a factor of 1.9 times in comparison with that of Pt NWs, and 3.7 times with 

that of commercial Pt (0.09 A mgPt
-1

), and the higher catalytic activity and stability of Pt59Ni41 NWs for 

the ORR is attributed as a result of the composition dependent atomic-scale alloying and faceting 

properties.
20

 Recently, a new class of Pt3Fe zigzaglike nanowires (Pt-skin Pt3Fe z-NWs) with stable 

high-index facets (HIFs) and nanosegregated Pt-skin structure is reported. Pt-skin Pt3Fe z-NWs with a 

mass activity of 2.11 A mgPt
−1

 and a specific activity of 4.34 mA cm
−2

 for the oxygen reduction reaction 

(ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest values in all reported 

PtFe-based ORR catalysts.
21

 

For many years, the process of the nucleation and growth of nanoparticles have been depicted by the 

LaMer burst nucleation and following Ostwald ripening to describe the change in the particles size. 

Watzky and Finke formulated an approach of constant slow nucleation followed by autocatalytic 

growth.
22

 Gao et al found that electrochemical deposition at a constant potential can overgrow Pt seeds, 

which are wet chemically synthesized Pt nanoparticles seeded homogeneously on diamond surface.
23

 

Simona et al proposed an oriented attachment growth Mechanism for silver nanowire formation.
24

 

Whatever, the nucleation and growth mechanisms behind the simple chemistry are extremely 

complicated.
25

 

To boost electrocatalyst rule, optimal 3D architectures of the supports and electrodes are important to achieve 

efficient pt utilization and high performance in PEMFC environment as the current density of the catalyst layer is 

only 1/10th that if all of the transport rates are infinitely fast.
26,27

 For constructing 3D electrode architecture, a 

freeze-drying/reduction process was suggested and demonstrated ultra-high pt utilization.
28

 An aqueous 

suspension of GO (graphene oxide) sheets, pt precursor and nafion ionomers was spread onto a GDL, then 

freeze-dryed and reduced while the pt precursor and go sheets were reduced to metallic pt and graphene, 

respectively. Novel fuel cell nanofibrous electrodes (NFEs) based on self-standing electrospun carbon nanofibre 

webs covered by platinum ultrathin nanoislands deposited by high overpotential pulsed electrodeposition.
29

 

These structured electrocatalyst layers have high electrical conductivity for fast charge transport and sufficient 

macroporosity for efficient reactant mass transportation. 

Our previous work designed firstly a porous carbon matrix and grew directly pt nanowires in the pore 

walls of the matrix, forming a so called “Pt nanowire electrode” where the Pt nanowire morphology and 

distribution in the catalyst layer can be adjusted by process parameters.
3,30,31

 The “Pt nanowire 

electrode” realized truly a 3D architecture as Pt-NWs growing directly on the pore wall and hence almost 

100% Pt exposed to oxidant. Our further studies on effects of the matrix materials shows that, 

comparing with the carbon matrix, the Pt-NWs growing in a Pt/C matrix display shorter and denser fluff 

on the carbon support.
32

 This reminds us that the Pt nanoparticles supported on carbon are evolved into 
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Pt nanowires and consequently can be  favourable sites for Pt-NW growing. Following above idea, here 

we introduced small amount of Pt-NPs into the carbon matrix for controlling Pt-NW growth and profile, 

and demonstrated that the home-made electrode performance was greatly improved. Measurements of 

TEM, XRD, single fuel cell performance, electrochemical impedance spectrum (EIS) and cyclic 

voltammogram (CV) were used to characterize effects of the pre-existing Pt nanoparticles (Pt-NP) from 

Pt/C. Finally, a Pt-NW growing mechanism was proposed. 

Experiment methods 

 

Chemicals and materials 

20wt% Pt/C (HiSPEC
TM

 3000) and 40wt% Pt/C (HiSPEC
TM

 4000) from Johnson Matthey; isopropanol 

((CH3)2CHOH), formic acid (HCOOH), and chloroplatinic acid hexahydrate (H2PtCl6 ˑ 6H2O) from 

Sinopharm Chem. Reagent; commercial carbon black (Vulcan XC-72R) from Shanghai Cabot Chemical; 

Nafion® perfluorinated resin solution (ionomer) (DE1020, 10 wt. %) and Nafion® membrane (NR212, 

50μm thickness) from DuPont. All of the above reagents and materials were used as-received without 

any further purification/treatment. The ultrapure water (18.2 MΩ) for preparing solution and cleaning Pt 

nanowires electrodes was obtained from the National Key Laboratory of Science and Technology on 

Micro/Nano Fabrication (NSTmnF) at Shanghai Jiao Tong University. The decal substrate was a glass-fiber 

contexture coated with polytetrafluoroethylene (PTFE) (ultra-premium grade) from CS Hyde Company. 

Gas diffusion layer (GDL) (AvCarb GDS3250) and gas diffusion electrode (GDE) with Pt nanoparticle 

loading of 0.40 mg cm
-2

 were purchased from Ballard Power Systems and Johnson Matthey, respectively. 

High purity hydrogen (99.999%), air (99.999%) and nitrogen (99.999%) were cylinder gases.  

Pt nanowires growing promoted by Pt seeds 

Similar with our previous works,
32

 Pt-nanowires electrodes were prepared by in-situ Pt-nanowires 

growing in a carbon matrix, which is about 4~10μm layer of carbon powders adhered by Nafion® resin on 

a transfer substrate, via Pt persecutor reducing and then depositing in. Here, instead of pure carbon 

black, part of carbon black was substituted with 20wt% Pt/C, where the Pt nanoparticles serve as seeds 

for promoting Pt nanowires growth. Typically, a matrix ink was prepared by blending 20wt% Pt/C, 

commercial carbon black, Nafion® resin solution and isopropanol (Pt/C+C: ionomer=4:1, weight basis), 

then sonicated for 5 min. The ink was sprayed onto a decal substrate with an airbrush gun (Iwata HP-CH) 

at 50~60℃ under an infrared light. Subsequently, the substrate was fixed on the bottom of a glass Petri 

dish with narrow stick tapes. 1mM chloroplatinic acid hexahydrate and formic acid solution were added 

to the dish in 2 hours and platinum slowly reduced, deposited and grew into Pt nanowires. After 48h, the 

substrate grown with Pt nanowires was taken out and rinsed for three times and immersed in deionized 

water for 24 hours to remove the remained ions, and then dried at 50℃ for 30min. Finally, a diluted 

ionomer solution (0.2% by wt.) was sprayed onto the surface of the catalyst layer at an amount of 0.10 
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mg cm
-2

 and dried at 50℃ for 2 hours. This Pt nanowires decal was used as cathode catalyst layer in the 

following section. 

 

Membrane electrode assembled (MEA) fabrication and single cell polarization tests 

An anode decal was prepared with commercial Pt/C catalyst. The well mixed ink of 40 wt% Pt/C catalyst, 

Nafion® ionomer solution and isopropanol was sprayed onto a substrate with Pt and Nafion® ionomer 

loadings fixed at 0.30 and 0.10 mg cm
-2

, respectively. Then the anode decal was dried at 50℃ for 2 

hours. 

A pair of the anode decal and the cathode decal were respectively placed on each side of a Nafion® 

NR212 electrolyte membrane and hot-pressed at 145℃ for 3 mins under 0.4 MPa. After cooling to room 

temperature, the decal substrates were peeled off and a MEA was made. For comparison, a commercial 

gas diffusion electrode (GDE) with Pt loading of 0.40 mg cm
-2

 as a cathode was used to fabricate a MEA 

under the same hot-pressing conditions as above.  

In this paper, the deposited Pt-NW loading was fixed at 0.20 mg Pt cm
-2

. Pt/C (20 % Pt) loadings were 

varied from 0 to 0.050 mg (Pt/C) cm
-2

 where the pre-exiting Pt nano-particles are named as Pt-NPs and 

the Pt-NP loadings correspond to from 0 to 0.010 mgPt-NP cm
-2

, while the blank carbon content fixed at 

0.20 mgC cm
-2

. In carbon content investigation, the carbon loadings were varied with 0.10, 0.20 and 0.30 

mgC cm
-2

, meanwhile the Pt seed loading was fixed at 0.025 mgPt/C cm
-2

or 0.005 mgPt-NP cm
-2

. 

The MEAs with 10 cm
2
 active area were inserted into graphite field plates with serpentine gas flow channels to 

assemble single cell units. The single cell units were assembled in the order of graphite field plate − sealing gasket 

– GDL – MEA – GDL − sealing gasket − graphite field plate, and were evaluated with an 850e Multi-Range Fuel Cell 

Test System (Scribner Associates Inc.). The MEAs were activated firstly with a program used in our previous 

work.
31

 The temperatures of the fuel cell and two humidifiers were keeping at 70℃ and 65℃, respectively. The 

stoichiometric ratios of hydrogen feeding and air feeding were 1.5 and 2.0, respectively. The back pressures were 

1.0 bar at both sides. Polarization curves were recorded by voltage sweeping from open circuit voltage (OCV) to 

0.30 V at a rate of 2 mV s
-1

. 

Characterizations 

The cross-sectional morphologies of the Pt nanowire electrodes were observed by a transmission 

electron microscope (TEM) (2100F, JEOL) operating at an accelerating voltage of 200 kV. The TEM 

samples were prepared by slicing the MEA strips embedded in the solidified epoxy resin. X-ray diffraction 

(XRD) patterns were recorded by a Rigaku D/max-2200/PC instrument using CuKα radiation (λ=1.54056 

Å) generated at 40 KV and 30 mA between 20° and 90° (2θ). The XRD samples of the Pt nanowires 

electrodes were peeled off from the MEAs. The Pt loadings of the catalyst layers were determined by 

inductively coupled plasma-atomic emission spectrometer (ICP-AES) (7500a, Agilent). 
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Cyclic voltammogram (CV) curves and electrochemical impedance spectra (EIS) spectrums were 

characterized in a two-electrode configuration (single cell). CV measurements on an electrochemical 

interface instrument (SI1287, Solartron Analytical Inc.) were recorded by voltage sweeping from 0.05 V 

to 1.00 V at 25mV s
-1 

with 300 sccm hydrogen and 75 sccm nitrogen being supplied to the anode and 

cathode, respectively. The temperatures of the cell and the humidifiers were all 35℃. The 

electrochemical active surface areas (ECSAs) of Pt nanowires electrodes were calculated on the hydrogen 

absorption area from 0.1 to 0.4 V of the CV data, assuming that 210 µC cm
-2

 was needed to form a 

monolayer of absorbed H on polycrystalline Pt surface.
34

 After the polarization tests, EIS tests with 885 

Fuel Cell Potentiostat (Scribner Associates Inc.) were conducted at the potentials of 0.80 V and 0.40 V in 

a frequency range of 10 kHz0.1 Hz with the AC amplitude of 10% DC current, and the test conditions 

were the same as those in the polarization measurements. 

 

Results and discussion 

Morphology and structure characterizations 

Pt nanowires morphology was examined by TEM image analysis. To prepare TEM samples, after tested the single 

cells were dispatched and the MEAs were embedded in epoxy resin, and then sliced into the strips after 

solidified. For comparison, the TEM images in the region near the GDLs were taken up, where the Pt-NW 

contents were the lowest as the gradient Pt-NW distribution across the cathode thickness.
31

 As shown in Fig. 1b, 

1c, pre-existing Pt-NPs greatly improve growing uniformity of the Pt nanowires by comparing with pure carbon 

case in Fig. 1a. This is due to that the pre-existing Pt nanoparticles not only provide low energy interfaces for Pt 

nucleation, trigger the nucleation and anisotropic growth of the Pt-NPs liking Au
35

 or Pd seeds
36

, but also may act 

as catalyst for the Pt reduction reaction. It was reported that Pd nanoparticles on the beads (a substrate) could 

acted as catalytic sites for the anisotropic Pt growth, and once the growth was initiated, the Pt nanowires 

continually grew in the <111> direction until the supply of Pt
0
 atoms was depleted.

37
 It can be found obviously in 

the high-resolution TEM insets of Fig. 1(a)(c) that with increasing the Pt nanoparticles in the carbon matrix the 

Pt-NWs are shorter and evenly tends unordered. This proves the existent Pt-NPs functioned as growing sites for 

Pt nanowires. 

Fig.1 

To illustrate the effect of Pt-NPs on Pt-NW crystallinity, the XRD patterns of the Pt nanowire electrodes with the 

Pt-NP loadings of 0, 0.005 and 0.010mgPt-NP cm
-2

 were measured and shown in Fig. 2. All XRD patterns of the 

samples are similar with bulk platinum and Pt characteristic peaks appear at 2θ of 39.8°, 46.3°, 67.5° and 81.6°, 

respectively corresponding to the (111), (200), (220), and (311) facets. The samples at the Pt-NP loadings of 0 and 

0.005 mgPt cm
-2

 have sharp and intense peaks of the (111) facet, which means perfect crystallinity and dominant 

(111) facets. However, more seeds liking the Pt-NP loading of 0.010 mg cm
-2

 introduce more growing sites, and 

lead less crystallinity or amorphous structure, which is again in well agreement with the above TEM analysis.  
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Fig. 2 

The carbon matrix thickness, which linearly increases with carbon loadings, affected Pt nanowire distribution as 

Pt precursor diffuses into through the matrix micro-pores from the bulk solution. To examine Pt nanowire 

dispersions of various carbon loadings of 0.10, 0.20 and 0.30 mgC cm
-2

, the TEM images near the GDLs region 

were photographed, where the least Pt nanowires were formed as the lowest concentrations of Pt precursor. 

The diffusion effect of formic acid can be ignored as it is extremely excessive (>100 stoichiometric ratio).  As 

shown in Fig. 1(d) (f), the sample with the highest carbon loading of 0.30 mgC cm
-2 

has the thickest catalyst layer 

and the least Pt-NWs in the region near the GDE. By comparing with blank carbon as shown in Fig. 1(a), the 

Pt-NPs improve uniformity of Pt nanowires growing along the Pt-NW matrix thickness as depth as >10μm (i.e. 

carbon loading of 0.30 mgC cm
-2

).  

Single cell performances improved by Pt nanoparticles 

The polarization curves of various single cells with the commercial GDE and home-made Pt-NW cathodes are 

shown in Fig. 3. The Pt-NP loading of the Pt-NW cathodes is varied from 0 to 0.010 mgPt-NP cm
-2 

as shown in Fig. 

3(a). The optimal Pt-NP loading is obtained at 0.005 mgPt-NP cm
-2

 with the current density 1.29 A cm
-2 

at 0.60 V. 

Comparing the cell performances of the commercial GDE and the optimal Pt-NW cathode, there is a crossing 

point at cell voltage of 0.48 V. When the voltage is below 0.48V, the optimal Pt-NW cathode has better 

performance, i.e. lower concentration polarization loss, for example, its current density at 0.30 V is 7% higher 

than that of the commercial GDE. The lower concentration polarization is accredited to the Pt-NWs openly 

exposed to oxidant, not liking that in the conventional electrodes part of Pt nanoparticles lost in the dead pores 

or very narrow pores and cannot be accessed. On the other hand, at a higher voltage over 0.48 V, the 

performance of the Pt-NW cathode is slightly lower, for example, its current density at 0.60 V is about 5% lower 

than that of the commercial GDE. This poorer performance of the Pt-NW cathode at high voltage range may be 

due to its lower Pt catalyst loading,
38

 where the Pt loading ratio of the optimal Pt-NW cathode and  the 

commercial cathode is 0.205 mgPt cm
-2

 vs 0.40 mgPt cm
-2

. 

Fig. 3 

EIS experiments were carried out to further evaluate the cathodes performances. Fig. 4(a) and 4(b) shows the EIS 

results of various Pt-NP loadings at the cell voltages of 0.80 and 0.40 V, respectively. At 0.80 V, due to the lower 

current density, the cathode impedances are dominated by the charge transfer resistances which are 

represented by the arc diameters in the Nyquist plots. The commercial GDE exhibits the smallest arc diameter, 

indicating the smallest charge transfer resistance and the best ORR kinetics, which corresponding to the highest 

current density in the high voltage range. Meanwhile, among the Pt-NW cathodes, the Pt-NW cathode with 0.005 

mgPt-NP cm
-2

 has the smallest charge transfer resistance, even if its Pt loading is less than that of the cathode with 

0.010 mgPt-NP cm
-2

. This is due to more active (111) facets of the former supported by Fig. 2. At 0.40 V, there are 

two semi-circles for all samples. The high frequency arc (left) is attributed to the charge transfer impedance and 

double layer capacitance, and the low frequency arc (right) is related with the mass transfer resistance.
39

 The 

cathode with 0.005 mgPt-NP cm
-2

 has the smallest diameter of low frequency arc compared with all the other 
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samples, even including the commercial GDE, confirming the smallest mass transfer resistance and best 

performance. 

Fig. 4 

The Pt-NP effect on the CV curves and ECSA values of the Pt-NW cathodes are illustrated in Fig. 5(a). The ECSA 

value increases with the Pt-NP loading, and the maximum value of 41.94 m
2
 gPt

-1
 is achieved at a Pt-NP loading of 

0.010 mgPt-NP cm
-2

, and the minimum value of 36.72 m
2
 gPt

-1
 at no Pt-NPs added. This trend meets with the results 

from TEM images in Fig. 1(a) (c) and XRD patterns in Fig. 2. The increase of the ESCA value with Pt-NP loading 

can be attributed to the more growing/depositing sites, and therefore the Pt-NW length and the catalyst 

aggregation is decreased. However, at a high Pt-NP loading, such as 0.010 mgPt-NP cm
-2

, the excessive growing 

sites lead to lower Pt-NW crystallinity, presenting an indistinct crystallographic alignment as shown in the inset of 

Fig.1c, and finally resulting in a large charge transfer resistance and a low ORR activity. 

Fig. 5 

Effects of matrix carbon loadings on single cell performance  

The carbon loading in the matrix determines the cathode thickness, and there is a linear relationship between 

them.
40

 There is a balance between the mass transfer resistance and Pt-NW aggregation. Performance curves of 

the Pt-NW cathodes with different carbon loadings are shown in Fig. 3(b). The performance curves of the Pt-NW 

cathode with 0.10 mgC cm
-2

 and 0.20 mgC cm
-2

 are quite similar, for example, their current densities at 0.60 V are 

about 1.35 A cm
-2

. Among the Pt-NW cathodes, the 0.10mgC cm
-2

 one is the highest power density at the cell 

voltage > 0.53V, while the 0.20 mgC cm
-2

 one the best at the cell voltage < 0.53V. The Pt-NW cathode with 0.30 

mgC cm
-2

 exhibits the poorest performance, which means that the thick cathode causes deleterious mass transfer 

polarization. 

The EIS results of the Pt-NW cathodes with different carbon loadings are illustrated in Fig. 4(c) and 4(d). It can be 

seen that, the cathode with 0.10 mgC cm
-2

 has the smallest impedance at 0.80 V while one with 0.3 mgC cm
-2 

has 

the largest impedance at 0.40 V, suggesting their smallest charge transfer resistance and the largest mass 

transfer resistance, respectively. The cathode with 0.20 mgC cm
-2

 exhibits the smallest mass transfer resistance at 

0.40V. Hence, the 0.20 mgC cm
-2

 one has an optimal performance at low voltage range. 

To further investigate the effect of carbon contents, the cycle voltammograms were recorded to evaluate the 

electrode ECSAs, and the results are presented in Fig. 5(b). The maximum ECSA value is 58.06 m
2
 gPt

-1
 obtained at 

0.10 mgC cm
-2

, and drops to 27.85 m
2
 gPt

-1
 when the carbon loading is 0.30 mgC cm

-2
. This can reason that the 

ionomer sprayed cannot reach on the deep Pt-NWs which could not contribute to electrochemistry. The value of 

58.06 m
2
 gPt

-1
 is even higher than that of 47.0m

2
 gPt

-1
 of the conventional Pt/C electrode reported in our previous 

work.
30

 However, except of ECSA, the cathode reaction also depends on conductivity and oxygen supplying. 

Therefore, the optimal carbon loading is 0.20 mgC cm
-2

. 

Pt efficiency comparing  
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Catalyst activity measurements of MEAs are generally evaluated using H2/O2 reactants in order to minimize mass 

transport resistances.
41

 To comparing Pt efficiency under real H2/air operating conditions, here the current 

density data at 0.9 V were taken and the specific current densities (SCDs) on Pt mass basis were calculated 

according to the data from Fig. 3(a). The SCDs of the home-made Pt-NW cathodes with Pt seeds loadings of 0, 

0.005, and 0.010 mgPt-NP cm
-2

 and the commercial GDE are summarized in Table 1. The Pt-NW cathode with 0.005 

mgPt-NP cm
-2

 has the highest SCD value of 89.56 A gPt
-1

, which is 47 % higher than 60.95 A gPt
-1

 of the 0.010 mgPt-NP 

cm
-2

 one and 110% higher than 42.58 A gPt
-1 

of the commercial GDE. The 0.005 mgPt-NP cm
-2

 one has the optimal 

catalyst utilization, although its ECSA value is a little smaller than that of the 0.010 mgPt-NP cm
-2

 sample. The SCD 

value of the commercial GDE is the smallest, and is less half of the 0.005 mg Pt-NP cm
-2

 sample. The high Pt 

efficiency of the Pt-NW cathodes is according to:  i) Pt-NWs grow directly on the pore wall almost with no 

hiding; ii) P-NP seeds induce uniform growing of Pt-NWs; and iii) dominant (111) facets with high catalytic activity 

for oxygen reduction reaction (ORR).  

Table 1 

Mechanism of Pt nanowires growing on Pt nanoparticle seeds 

There are many mechanisms of nucleation and growth in solutions such as LaMer nucleation, 

Finke-Watzky two step mechanism, Ostwald ripening, digestive ripening, coalescence and orientated 

attachment, and intra-particle growth.
28

 However, these mechanisms are in conflicts or inverse with 

some others, for example, the nucleation and growth could occur simultaneously by Finke-Watzky 

mechanism or separately by LaMer mechanism. Cheong et al
42 

investigated the precursor concentrations 

effects by in situ and ex situ methods and found the low concentration growth occurs at a relatively slow 

rate and yields faceted morphologies, are characteristic of a thermodynamically controlled regime. It is 

thought that incomplete reduction of AuCl precursor allows only a part of it to transform to Au, which 

can seed nanowire growth.
43

 Meng et al
16

 demonstrated that both formate as the intermediate species 

and HCOOH in the reacting solution (PH=1.53.5) are significantly important, while formate reduces the 

Pt salt and HCOOH block all Pt surfaces except Pt (111) facets. 

The catalytic phenomena of Pt-NP seeds was observed obviously in present experimental. When Pt-NPs 

(supported on carbon) added in the matrix, the color of the solution containing Pt precursor fades from 

light yellow to colorless in less than 12hrs, comparing that more than 24hrs without Pt-NPs. The 

proposed schematic of Pt nanowires growth mechanism in the carbon matrix is illustrated in Fig. 6. It is 

assumed that the platinum precursors and formic acid diffuse into the the matrix consisting of carbon 

powders and Pt-NPs bonded by ionomer. Then the Pt seeds facilitate platinum precursor reduction and 

provide depositing sites for the newly formed Pt atoms which are nearly layer-by-layer monomer 

addition onto the crystallite faces to yield stable morphology. Except of reducing function, overwhelming 

formic acid also serves for capping agent, therefore platinum atoms add onto the (111) facet and  the 

sole nanowire morphology were produced. Concentration difference of platinum precursor, driving from 

the bulk into the matrix through the micro pores, leads to a gradient Pt-NW profile. Nanocrystal growth 
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in the low concentration reaction, here 1mM chloroplatinic acid hexahydrate adopted, occurs under 

thermodynamic control.
42

 Here weak reducing agent, low concentrations of the reactants and low 

temperature ensure a slow reaction rate. Formic acid as capping agent plays an important role and 

promotes an anisotropy growth along (111) facets.
16

 On the other hand, catalytic and seed functions of 

Pt-NPs induce Pt atoms deposited preferentially on the Pt-NPs, not carbon particles, and result in 

relatively progressive gradient or better uniformity along the matrix thickness. It was evidenced by the 

results of the TEM images and XRD patterns as shown in Fig. 1(a)(c) and Fig. 2, where the more Pt-NP 

seeds, the shorter nanowires at the same Pt depositing amount.  

Fig. 6 

Conclusions 

In summary, a novel Pt-NW cathode with low Pt loading was developed by introducing Pt nanoparticles (Pt-NPs) 

into a carbon matrix and in-situ growing Pt nanowires. The pre-exiting Pt nanoparticles provide low energy 

interfaces for Pt nucleation and thus induce the Pt nanowire growth, therefore avoid the Pt nanowire 

aggregation. However, excessive Pt nanoparticles decrease length and crystallinity of the Pt nanowires, even if 

resulting in an amorphous structure. The carbon loading in the matrix dominates the matrix thickness and Pt 

profile. The optimal Pt-NW cathode is with Pt-NP loading of 0.005 mgPt-NP cm
-2

 and carbon loading of 0.02 mgC 

cm
-2

, respectively. The optimal cathode with total cathode Pt loading of 0.205 mg cm
-2

 has the highest specific 

current density of 89.56 A gPt
 -1 

at 0.9V under air/H2 feeding, which is about 110% higher than that of the 

commercial GDE with Pt loading of 0.40 mg cm
-2

. When the cell voltage is below 0.48V, the optimal Pt-NW 

cathode has better performance than the commercial GDE. Good performance of the Pt-NW cathodes was 

attributed to i) uniform Pt-NW growth induced by Pt-NPs; ii) high Pt utilization as Pt-NWs growing directly on the 

pore wall and hence fully exposed to oxidant iii) dominant (111) facets of the Pt-NWs with high ORR catalytic 

activity. A Pt-NW growth mechanism was proposed that Pt precursor diffuses into the matrix of pre-existing 

Pt-NPs by concentration driving, and Pt-NPs as seeds induce Pt-NW growth kinetics and provide priority sites for 

platinum depositing. This work provides a new strategy for tailoring Pt-NW nanostructures and designing the 

electrode architectures, and can be extend to the other electrocatalysts of alloys or alloying nanowires. 
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