20 research outputs found
Offshore-origin warm water inflows toward Totten Ice Shelf, East Antarctica
The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc
ââObserving Antarctic Bottom Water in the Southern Oceanâ
Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABWâs key role in regulating Earthâs climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system
Structure of the Subpolar Gyre in the AustralianâAntarctic Basin Derived From Argo Floats
The climatological structure of the subpolar cyclonic circulation off East Antarctica is delineated with Argo float data from the past decade. Up to 40% of the float profiles in the seasonal ice zone have been without satellite positioning. We refined their position data as following the bathymetry to get appropriate positions in the continental margin. The error of the terrain-following interpolation was estimated by using positioned data to be 23 +/- 27 (78 +/- 70) km for 90 (390) day period. Profiles with the under-ice period shorter than 360 days are adopted. The float trajectories reveal the extent of the subpolar gyre adjoined to the westward Antarctic Slope Current to its south and the southernmost eastward jet of the Antarctic Circumpolar Current along 4,000 m isobath to its north. The subpolar circulation in the Australian-Antarctic Basin comprises of a series of quasi-barotropic subgyre circulations, which are bounded by bathymetric spurs in the continental slope. The temperature field reveals shoreward excursions of Circumpolar Deep Water associated with the subgyres, effectively supplying heat to the continental shelves. An along-slope temperature variation up to 1 degrees C in 27.7-27.8 kg/m(3) sigma(theta) indicates an active cross-slope exchange within the layer. Provided the velocity field and the water mass structure, the subsurface water mass exchange is likely accomplished by a combination of topographically controlled mean flow and the eddy transports. Our findings suggest that the bathymetry primarily determines the structure of the subpolar gyre. Plain Language Summary Subpolar gyres in the Southern Ocean are clockwise circulations that separate cold shelf water from warm offshore water. These circulations are essential for the Antarctic climate since they control heat supply onto the continental shelves. In this study, the physical structure of the subpolar gyre off East Antarctica was investigated using autonomous profiling float data with a new methodology. We found that the subpolar gyre in the Australian-Antarctic Basin is composed of a series of smaller circulations, which are called subgyres. Subgyres are associated with the bathymetry and likely regulate the water exchange across the continental slope. We refined the traditional picture of the basin-scale subpolar gyre, and the circulation structure was described in the context of water transport from offshore to inshore
Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica
The southern boundary (SB) of the Antarctic Circumpolar Current, the southernmost extent of the upper overturning circulation, regulates the Antarctic thermal conditions. The SB's behavior remains unconstrained because it does not have a clear surface signature. Revisited hydrographic data from off East Antarctica indicate full-depth warming from 1996 to 2019, concurrent with an extensive poleward shift of the SB subsurface isotherms (>50 km), which is most prominent at 120 degrees E off the Sabrina Coast. The SB shift is attributable to enhanced upper overturning circulation and a depth-independent frontal shift, generally accounting for 30 and 70%, respectively. Thirty years of oceanographic data corroborate the overall and localized poleward shifts that are likely controlled by continental slope topography. Numerical experiments successfully reproduce this locality and demonstrate its sensitivity to mesoscale processes and wind forcing. The poleward SB shift under intensified westerlies potentially induces multidecadal warming of Antarctic shelf water
Structure of the Subpolar Gyre in the Australian-Antarctic Basin Derived From Argo Floats
The climatological structure of the subpolar cyclonic circulation off East Antarctica is delineated with Argo float data from the past decade. Up to 40% of the float profiles in the seasonal ice zone have been without satellite positioning. We refined their position data as following the bathymetry to get appropriate positions in the continental margin. The error of the terrain-following interpolation was estimated by using positioned data to be 23 +/- 27 (78 +/- 70) km for 90 (390) day period. Profiles with the under-ice period shorter than 360 days are adopted. The float trajectories reveal the extent of the subpolar gyre adjoined to the westward Antarctic Slope Current to its south and the southernmost eastward jet of the Antarctic Circumpolar Current along 4,000 m isobath to its north. The subpolar circulation in the Australian-Antarctic Basin comprises of a series of quasi-barotropic subgyre circulations, which are bounded by bathymetric spurs in the continental slope. The temperature field reveals shoreward excursions of Circumpolar Deep Water associated with the subgyres, effectively supplying heat to the continental shelves. An along-slope temperature variation up to 1 degrees C in 27.7-27.8 kg/m(3) sigma(theta) indicates an active cross-slope exchange within the layer. Provided the velocity field and the water mass structure, the subsurface water mass exchange is likely accomplished by a combination of topographically controlled mean flow and the eddy transports. Our findings suggest that the bathymetry primarily determines the structure of the subpolar gyre. Plain Language Summary Subpolar gyres in the Southern Ocean are clockwise circulations that separate cold shelf water from warm offshore water. These circulations are essential for the Antarctic climate since they control heat supply onto the continental shelves. In this study, the physical structure of the subpolar gyre off East Antarctica was investigated using autonomous profiling float data with a new methodology. We found that the subpolar gyre in the Australian-Antarctic Basin is composed of a series of smaller circulations, which are called subgyres. Subgyres are associated with the bathymetry and likely regulate the water exchange across the continental slope. We refined the traditional picture of the basin-scale subpolar gyre, and the circulation structure was described in the context of water transport from offshore to inshore
Warm surface waters increase Antarctic ice shelf melt and delay dense water formation
Melting ice shelves around Antarctica control the massive input of freshwater into the ocean and play an intricate role in global heat redistribution. The Amery Ice Shelf regulates wintertime sea-ice growth and dense shelf water formation. We investigated the role of warm Antarctic Surface Water in ice shelf melting and its impact on dense shelf water. Here we show that the coastal ocean in summer 2016/17 was almost sea-ice free, leading to higher surface water temperatures. The glacial meltwater fraction in surface water was the highest on record, hypothesised to be attributable to anomalous ice shelf melting. The excess heat and freshwater in early 2017 delayed the seasonal evolution of dense shelf water. Focused on ice shelf melting at depth, the importance and impacts of warming surface waters has been overlooked. In a warming climate, increased surface water heating will reduce coastal sea-ice production and potentially Antarctic Bottom Water formation. Excessively warm and fresh surface water along the Amery Ice Shelf, Antarctica, in 2017 led to more ice melt and delayed dense water formation, according to analyses of in situ observations
Tidally modified western boundary current drives interbasin exchange between the Sea of Okhotsk and the North Pacific
Abstract The interbasin exchange between the Sea of Okhotsk and the North Pacific governs the intermediate water ventilation and fertilization of the nutrient-rich subpolar Pacific, and thus has an enormous influence on the North Pacific. However, the mechanism of this exchange is puzzling; current studies have not explained how the western boundary current (WBC) of the subarctic North Pacific intrudes only partially into the Sea of Okhotsk. High-resolution models often exhibit unrealistically small exchanges, as the WBC overshoots passing by deep straits and does not induce exchange flows. Therefore, partial intrusion cannot be solely explained by large-scale, wind-driven circulation. Here, we demonstrate that tidal forcing is the missing mechanism that drives the exchange by steering the WBC pathway. Upstream of the deep straits, tidally-generated topographically trapped waves over a bank lead to cross-slope upwelling. This upwelling enhances bottom pressure, thereby steering the WBC pathway toward the deep straits. The upwelling is identified as the source of joint-effect-of-baroclinicity-and-relief (JEBAR) in the potential vorticity equation, which is caused by tidal oscillation instead of tidally-enhanced vertical mixing. The WBC then hits the island chain and induces exchange flows. This tidal control of WBC pathways is applicable on subpolar and polar regions globally