39 research outputs found

    Sensing as a Service in 6G Perceptive Networks: A Unified Framework for ISAC Resource Allocation

    Full text link
    In the upcoming next-generation (5G-Advanced and 6G) wireless networks, sensing as a service will play a more important role than ever before. Recently, the concept of perceptive network is proposed as a paradigm shift that provides sensing and communication (S&C) services simultaneously. This type of technology is typically referred to as Integrated Sensing and Communications (ISAC). In this paper, we propose the concept of sensing quality of service (QoS) in terms of diverse applications. Specifically, the probability of detection, the Cramer-Rao bound (CRB) for parameter estimation and the posterior CRB for moving target indication are employed to measure the sensing QoS for detection, localization, and tracking, respectively. Then, we establish a unified framework for ISAC resource allocation, where the fairness and the comprehensiveness optimization criteria are considered for the aforementioned sensing services. The proposed schemes can flexibly allocate the limited power and bandwidth resources according to both S&C QoSs. Finally, we study the performance trade-off between S&C services in different resource allocation schemes by numerical simulations

    A novel safety assurance method based on the compound equivalent modeling and iterate reduce particle‐adaptive Kalman filtering for the unmanned aerial vehicle lithium ion batteries.

    Get PDF
    The safety assurance is very important for the unmanned aerial vehicle lithium ion batteries, in which the state of charge estimation is the basis of its energy management and safety protection. A new equivalent modeling method is proposed for the mathematical expression of different structural characteristics, and an improved reduce particle-adaptive Kalman filtering model is designed and built, in which the incorporate multiple featured information is absorbed to explore the optimal representation by abandoning the redundant and abnormal information. And then, the multiple parameter identification is investigated that has the ability of adapting the current varying conditions, according to which the hybrid pulse power characterization test is accommodated. As can be known from the experimental results, the polynomial fitting treatment is carried out by conducting the curve fitting treatment and the maximum estimation error of the closed-circuit-voltage is 0.48% and its state of charge estimation error is lower than 0.30% in the hybrid pulse power characterization test, which is also within 2.00% under complex current varying working conditions. The iterate calculation process is conducted for the unmanned aerial vehicle lithium ion batteries together with the compound equivalent modeling, realizing its adaptive power state estimation and safety protection effectively

    Bulk Density Adjustment of Resin-Based Equivalent Material for Geomechanical Model Test

    Get PDF
    An equivalent material is of significance to the simulation of prototype rock in geomechanical model test. Researchers attempt to ensure that the bulk density of equivalent material is equal to that of prototype rock. In this work, barite sand was used to increase the bulk density of a resin-based equivalent material. The variation law of the bulk density was revealed in the simulation of a prototype rock of a different bulk density. Over 300 specimens were made for uniaxial compression test. Test results indicated that the substitution of quartz sand by barite sand had no apparent influence on the uniaxial compressive strength and elastic modulus of the specimens but can increase the bulk density, according to the proportional coarse aggregate content. An ideal linearity was found in the relationship between the barite sand substitution ratio and the bulk density. The relationship between the bulk density and the usage of coarse aggregate and barite sand was also presented. The test results provided an insight into the bulk density adjustment of resin-based equivalent materials

    Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots

    Full text link
    Anisotropic exchange-splitting in semiconductor quantum dots (QDs) results in bright-exciton fine-structure-splitting (FSS) important for quantum information processing. Direct measurement of FSS usually requires single/few QDs at liquid-helium temperatures, because of its sensitivity to QD size and shape, whereas measuring and controlling FSS at an ensemble-level seem to be impossible unless all the dots are made to be nearly the same. Here we report strong bright-exciton FSS up to 1.6 meV in solution-processed CsPbI3 perovskite QDs, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperatures. The splitting is robust to QD size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic "fine-structure gap" that agrees well with the observed FSS. This gap stems from an avoided crossing of bright-excitons confined in orthorhombically-distorted QDs that are bounded by the pseudocubic {100} family of planes

    Can oblique lateral interbody fusion (OLIF) create more lumbosacral lordosis in lumbar spine surgery than minimally invasive transforaminal interbody fusion (MIS-TLIF)?

    Get PDF
    ObjectiveTo compare the differences in the correction effect for lumbosacral lordosis and clinical outcomes between OLIF with/without posterior pedicle screw fixation (PSF) and MIS-TLIF through a retrospective cohort study.MethodThere were 98 consecutive patients originally enrolled for the study, but 15 patients were excluded due to intraoperative endplate injury or osteotomy performed for severe spinal deformity. Thus, 83 patients included in this study (36 males and 47 females, mean age 65.8 years) underwent single to three-segment OLIF (including OLIF + PSF and OLIF Standalone) or MIS-TLIF surgery from 2016 to 2018. The operation time, bleeding and blood transfusion, fusion rate, complication, pre-and postoperative visual analogue scale (VAS), Oswestry Disability Index (ODI) were evaluated. In addition, radiological parameters including lumbosacral lordosis (LL), fused segment lordosis (FSL), anterior disc height (ADH) and posterior disc height (PDH) were measured. The clinical outcomes, LL, FSL, ADH and PDH restored and were compared between the OLIF group, OLIF subgroups and MIS-TLIF group.ResultsThe average operation time and intraoperative bleeding were significantly less in the OLIF group than in the MIS-TLIF group (163 ± 68 vs. 233 ± 79 min, 116 ± 148 vs. 434 ± 201 ml, P < 0.001). There was no statistically significant difference between the OLIF group and the MIS-TLIF group in VAS and ODI improvements, fusion rate, complication, LL and FSL correction (P > 0.05). The ADH and PDH increases in the OLIF group were more than that in MIS-TLIF group (P < 0.001). The correction of LL was significantly more in the OLIF + PSF group than in the MIS-TLIF group (9.9 ± 11.1 vs. 4.2 ± 6.1deg, P = 0.034).ConclusionOLIF and MIS-TLIF are both safe and effective procedures, capable of restoring lumbosacral lordosis and disc height partly. Combined with PSF, OLIF can achieve a better correction effect of lumbosacral lordosis than MIS-TLIF

    Face mask integrated with flexible and wearable manganite oxide respiration sensor

    Get PDF
    Face masks are key personal protective equipment for reducing exposure to viruses and other environmental hazards such as air pollution. Integrating flexible and wearable sensors into face masks can provide valuable insights into personal and public health. The advantages that a breath-monitoring face mask requires, including multi-functional sensing ability and continuous, long-term dynamic breathing process monitoring, have been underdeveloped to date. Here, we design an effective human breath monitoring face mask based on a flexible La0.7Sr0.3MnO3 (LSMO)/Mica respiration sensor. The sensor’s capabilities and systematic measurements are investigated under two application scenes, namely clinical monitoring mode and daily monitoring mode, to monitor, recognise, and analyse different human breath status, i.e., cough, normal breath, and deep breath. This sensing system exhibits super-stability and multi-modal capabilities in continuous and long-time monitoring of the human breath. We determine that during monitoring human breath, thermal diffusion in LSMO is responsible for the change of resistance in flexible LSMO/Mica sensor. Both simulated and experimental results demonstrate good discernibility of the flexible LSMO/Mica sensor operating at different breath status. Our work opens a route for the design of novel flexible and wearable electronic devices

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Isomerism in Titanium-Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity

    No full text
    Phase isomerism is a common and important phenomenon in inorganic materials, but the molecular isomerism of their nanocluster models is still rare. In this work, we report the first pair of isomeric titanium-oxo clusters. Through combining pentagonal {Ti(Ti-5)} building units in corner-sharing or edge-sharing forms, the two obtained Ti-20-oxo clusters take vertical and horizontal core configurations, respectively, which are both functionalized by the same organic ligands. More interestingly, the vertical type Ti-20-oxo core contains an identical {Ti8O14} moiety as anatase, making it the first molecular model of anatase TiO2. As a result, the vertical type cluster exhibits better photocatalytic H-2 evolution activity, higher photocurrent response and faster charge transfer to external acceptors than its horizontal isomer. Thus, this work provides a cluster isomer method to understand the structure-property relationship of import titanium oxide materials
    corecore