83 research outputs found

    Effect of Nitric Oxide Treatment on Storage Quality of Glorious Oranges

    Get PDF
    AbstractEffect of nitric oxide (NO) treatment on storage quality and disease resistance of Glorious oranges was investigated in the experiment. The results showed that NO treatment could effectively reduce disease incidence inoculated with Collletotichum goeosporioides Penz and inhibit the increase of lesion diameter of Glorious oranges during storage. Compared with the control, NO treatment kept higher level of titritable acidity (TA), soluble protein, ascorbic acid (ASA) and reducing sugar, and lower level of weight lose rate and soluble solid concentration (SSC), retarding ripening of fruits

    Control of Citrus Post-harvest Green Molds, Blue Molds, and Sour Rot by the Cecropin A-Melittin Hybrid Peptide BP21

    Get PDF
    In this study, the activity of the cecropin A-melittin hybrid peptide BP21 (Ac-FKLFKKILKVL-NH2) in controlling of citrus post-harvest green and blue molds and sour rot and its involved mechanism was studied. The minimum inhibitory concentrations of BP21 against Penicillium digitatum, Penicillium italicum, and Geotrichum candidum were 8, 8, and 4 μmol L-1, respectively. BP21 could inhibit the growth of mycelia, the scanning electron microscopy results clearly showed that the mycelia treated with BP21 shrank, formed a rough surface, became distorted and collapsed. Fluorescent staining with SYTOX Green (SG) indicated that BP21 could disintegrate membranes. Membrane permeability parameters, including extracellular conductivity, the leakage of potassium ions, and the release of cellular constituents, visibly increased as the BP21 concentration increased. Gross and irreversible damage to the cytoplasm and membranes was observed. There was a positive correlation between hemolytic activity and the concentration of BP21. These results suggest peptide BP21 could be used to control citrus post-harvest diseases

    Dissolved oxygen concentration inversion based on Himawari-8 data and deep learning: a case study of lake Taihu

    Get PDF
    Dissolved Oxygen (DO) concentration is an essential water quality parameter widely used in water environments and pollution assessments, which indirectly reflects the pollution level and the occurrence of blue-green algae. With the advancement of satellite technology, the use of remote sensing techniques to estimate DO concentration has become a crucial means of water quality monitoring. In this study, we propose a novel model for DO concentration estimation in water bodies, termed Dissolved Oxygen Multimodal Deep Neural Network (DO-MDNN), which utilizes synchronous satellite remote sensing data for real-time DO concentration inversion. Using Lake Taihu as a case study, we validate the DO-MDNN model using Himawari-8 (H8) satellite imagery as input data and actual DO concentration in Lake Taihu as output data. The research results demonstrate that the DO-MDNN model exhibits high accuracy and stability in DO concentration inversion. For Lake Taihu, the performance metrics including adj_R2, RMSE, Pbias, and SMAPE are 0.77, 0.66 mg/L, −0.44%, and 5.36%, respectively. Compared to the average performance of other machine learning models, the adj_R2 shows an improvement of 6.40%, RMSE is reduced by 8.27%, and SMAPE is decreased by 12.1%. These findings highlight the operational feasibility of real-time DO concentration inversion using synchronous satellite data, providing a more efficient, economical, and accurate approach for real-time DO monitoring. This method holds significant practical value in enhancing the efficiency and precision of water environment monitoring

    Effects of Low Temperature at Booting Stage on Sucrose Metabolism and Endogenous Hormone Contents in Winter Wheat Spikelet

    Get PDF
    Low spring temperatures often occur during the winter wheat booting stage, when the young ears are very sensitive to cold. In this study, we used two wheat varieties differing in cold sensitivity (sensitive variety Yangmai 18 and tolerant variety Yannong 19) to examine the effect of low temperature on wheat grain number at booting stage. Low temperature stress was simulated in an artificial climate chamber at 4°C for 60 h in 2016 and at 2, 0, or −2°C for 24 h in morphological assays, showing that the development of wheat spikelets was inhibited and floret growth was delayed following low temperature stress. However, an increase in the sucrose content of young panicles was also observed, and the activity of enzymes involved in sucrose metabolism was dynamically altered. Sucrose phosphate synthase activity was enhanced, and sucrose synthase activity significantly increased after treatment at 4 and 2°C, respectively. However, activities of sucrose synthase and invertase decreased with a reduction in temperature. Gene expression assays further revealed downregulation of TaSuS1 expression and upregulation of TaSuS2, while expression of CWINV was inhibited. Moreover, phytohormone content assays showed an increase in the content of abscisic acid in young wheat ears, but a decrease in the content of auxin and gibberellins. The grain number per spike and 1000-grain weight also showed a downward trend following low temperature stress. Overall, these findings suggest that low temperature at booting induces abscisic acid accumulation in winter wheat, altering the activity of the enzymes involved in sucrose metabolism, which leads to an accumulation of sucrose in the young ears, thereby having a negative effect on wheat production

    Intra-Familial Phenotypic Heterogeneity and Telomere Abnormality in von Hippel- Lindau Disease: Implications for Personalized Surveillance Plan and Pathogenesis of VHL-Associated Tumors

    Get PDF
    von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome with poor survival. The current recommendations have proposed uniform surveillance strategies for all patients, neglecting the obvious phenotypic varieties. In this study, we aim to confirm the phenotypic heterogeneity in VHL disease and the underlying mechanism. A total of 151 parent-child pairs were enrolled for genetic anticipation analysis, and 77 sibling pairs for birth order effect analysis. Four statistical methods were used to compare the onset age of patients among different generations and different birth orders. The results showed that the average onset age was 18.9 years earlier in children than in their parents, which was statistically significant in all of the four statistical methods. Furthermore, the first-born siblings were affected 8.3 years later than the other ones among the maternal patients. Telomere shortening was confirmed to be associated with genetic anticipation in VHL families, while it failed to explain the birth order effect. Moreover, no significant difference was observed for overall survival between parents and children (p = 0.834) and between first-born patients and the other siblings (p = 0.390). This study provides definitive evidence and possible mechanisms of intra-familial phenotypic heterogeneity in VHL families, which is helpful to the update of surveillance guidelines

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Analysis of energy saving in domestic ceramic industry kilns

    No full text
    Ceramic industrial kiln refers to the combustion equipment for ceramic production, which generally refers to roller kiln, shuttle tunnel kiln and shuttle kiln. Roller kiln refers to the kiln with continuous firing and rotating roller as the vehicle of the billet body; Tunnel kiln refers to the kiln which adopts continuous firing and takes rail kiln car as the transport vehicle of billet body. Shuttle kiln refers to the kiln which is fired intermittently and consists of kiln car, kiln chamber and kiln door. Factors influencing energy saving of kiln include construction materials, kiln structure, combustion technology, thermal insulation performance and automation control

    Sanitary wares (Wash-basin) product industry situation and quality analysis

    No full text
    Sanitary ceramic products refer to glazed ceramic products used for sanitary installations. Sanitary wares products are divided into ceramic Sanitary wares and ceramic Sanitary wares according to different materials. According to use divide for implement kind, basin kind. The urinal type includes sit urinal, squat urinal, urinal; The basin category includes the Wash-basiner, washing tank, mop pool and so on. Among them, the Wash-basiner refers to the glazed ceramic products used for washing face and hands. It is a necessary sanitary equipment in family or public places and has become an essential sanitary appliance in people’s life
    corecore