25 research outputs found

    A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction.

    Get PDF
    AIMS Cardiac myosin-binding protein C (cMyC) demonstrated high diagnostic accuracy for the early detection of non-ST-elevation myocardial infarction (NSTEMI). Its dynamic release kinetics may enable a 0/1h-decision algorithm that is even more effective than the ESC hs-cTnT/I 0/1 h rule-in/rule-out algorithm. METHODS AND RESULTS In a prospective international diagnostic study enrolling patients presenting with suspected NSTEMI to the emergency department, cMyC was measured at presentation and after 1 h in a blinded fashion. Modelled on the ESC hs-cTnT/I 0/1h-algorithms, we derived a 0/1h-cMyC-algorithm. Final diagnosis of NSTEMI was centrally adjudicated according to the 4th Universal Definition of Myocardial Infarction. Among 1495 patients, the prevalence of NSTEMI was 17%. The optimal derived 0/1h-algorithm ruled-out NSTEMI with cMyC 0 h concentration below 10 ng/L (irrespective of chest pain onset) or 0 h cMyC concentrations below 18 ng/L and 0/1 h increase <4 ng/L. Rule-in occurred with 0 h cMyC concentrations of at least 140 ng/L or 0/1 h increase ≥15 ng/L. In the validation cohort (n = 663), the 0/1h-cMyC-algorithm classified 347 patients (52.3%) as 'rule-out', 122 (18.4%) as 'rule-in', and 194 (29.3%) as 'observe'. Negative predictive value for NSTEMI was 99.6% [95% confidence interval (CI) 98.9-100%]; positive predictive value 71.1% (95% CI 63.1-79%). Direct comparison with the ESC hs-cTnT/I 0/1h-algorithms demonstrated comparable safety and even higher triage efficacy using the 0h-sample alone (48.1% vs. 21.2% for ESC hs-cTnT-0/1 h and 29.9% for ESC hs-cTnI-0/1 h; P < 0.001). CONCLUSION The cMyC 0/1h-algorithm provided excellent safety and identified a greater proportion of patients suitable for direct rule-out or rule-in based on a single measurement than the ESC 0/1h-algorithm using hs-cTnT/I. TRIAL REGISTRATION ClinicalTrials.gov number, NCT00470587

    The role of intravascular imaging in chronic total occlusion percutaneous coronary intervention

    Get PDF
    Chronic total occlusions (CTOs) represent the most complex subset of coronary artery disease and therefore careful planning of CTO percutaneous coronary recanalization (PCI) strategy is of paramount importance aiming to achieve procedural success, and improve patient's safety and post CTO PCI outcomes. Intravascular imaging has an essential role in facilitating CTO PCΙ. First, intravascular ultrasound (IVUS), due to its higher penetration depth compared to optical coherence tomography (OCT), and the additional capacity of real-time imaging without need for contrast injection is considered the preferred imaging modality for CTO PCI. Secondly, IVUS can be used to resolve proximal cap ambiguity, facilitate wire re-entry when dissection and re-entry strategies are applied and most importantly to guide stent deployment and optimization post implantation. The role of OCT during CTO PCI is currently limited to stent sizing and optimization, however, due to its high spatial resolution, OCT is ideal for detecting stent edge dissections and strut malapposition. In this review, we describe the use of intravascular imaging for lesion crossing, plaque characterization and wire tracking, extra- or intra-plaque, and stent sizing and optimization during CTO PCI and summarize the findings of the major studies in this field

    Cardiac Troponin - Diagnostic Problems and Impact on Cardiovascular Disease

    Get PDF
    The definition of a high-sensitivity cardiac Troponin (cTn) assay describes the ability to quantify a cardiac biomarker level in at least 50% of healthy individuals. This advance in analytic sensitivity has come with a perceived loss of specificity in the most classic application - chest pain triage and the diagnosis of acute myocardial infarction (AMI). As cardiac Troponin can no longer be used as a dichotomous test, the medical field is increasingly moving towards a more granular interpretation. However, rapid rule-out/rule-in algorithms for AMI still rely on concrete thresholds for efficient triage, irrespective of the patient's comorbidities. Owing to a slightly elevated cTn value, evermore patients appear to fall into an indeterminate risk zone of diagnostic uncertainty. The reasons are manifold, spanning biological variation, analytical issues, increased plasma membrane permeability and the potential cytosolic release of cTn. This review provides a contemporary overview of the literature concerning the use of cardiac Troponin in chronic and acute cardiovascular care. Key messages High-sensitivity cardiac Troponin assays have transformed the assessment of cardiovascular disease. Rapid rule-out algorithms for chest pain triage have become increasingly complicated, but enable safe rule-out. Cardiac Troponin tracks mid- to long-term risk in patients with hyperlipidaemia, heart failure and renal dysfunction

    Cardiac troponin and defining myocardial infarction

    No full text
    corecore