19 research outputs found

    Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    Get PDF
    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer’s electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records

    Interfacial rearrangements and strain evolution in the thin film growth of ZnPc on glass

    Get PDF
    We report on the characterization of the growth of vacuum-deposited zinc phthalocyanine (ZnPc) thin films on glass through a combination of in situ grazing incidence x-ray scattering, x-ray reflectivity, and atomic force microscopy. We found that the growth at room temperature proceeds via the formation of two structurally unique substrate-induced interfacial layers, followed by the growth of the γ-ZnPc polymorph thereafter (thickness ≈1.0 nm). As the growth of the bulk γ-ZnPc progresses, a substantial out-of-plane lattice strain (≈15% relative to γ-ZnPc powder) is continually relaxed during the thin film growth. The rate of strain relaxation was slowed after a thickness of ≈13 nm, corresponding to the transition from layer growth to island growth. The findings reveal the real-time microstructural evolution of ZnPc and highlight the importance of substrate-induced strain on thin film growth

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Quantifying the Impact of Inhomogeneity, Transport and Recombination in Emerging Thin-Film Solar Cells

    No full text
    Thin-film solar cells represent the most relevant technological extension of the photovoltaic energy conversion landscape, which is currently dominated by silicon tech-nology. However, the very concept of thin-film solar cells brings inherent challenges. Firstly, the deposition of thin-film solar cells with large aspect ratio introduces inevitable lateral inhomogeneity in the structure. Secondly, absorber films deposited from the gas or liquid phase are of inferior electronic quality compared to monocrystalline silicon technology, meaning that charge carrierre combination is enhanced and charge transport is slowed down. This thesis provides methodologies to identify and assess critical parameters for the two major challenges of inhomogeneous absorber layers and absorber layers with low electronic quality. The presented concepts introduce metrics that allow quantitatively evaluating and comparing different materials or systems with respect to the given phenomena. Thus, these concepts will contribute to the continuous and structured technological progress of thin-film solar cells. Specifically, a methodology is presented to assess any detrimental impact of inhomogeneity in the absorber film in the form of pinholes with regard to the solar cell performance. Different experimentally tested contact configurations turn out to behave qualitatively similar but show major quantitative differences. With regard to the electronic quality, a thorough analysis of the influencing factors on the fill factor is conducted and a material-based electronic quality factor is defined herein. The electronic quality factor functions as a figure of merit for the fill factor that reflects the interplay of charge carrier transport and charge carrierre combination. By providing a method to assess the electronic quality factor of thin-film absorbers through basic characterization methods, the study offers a widely applicable tool to evaluate different materials or technologies in terms of charge carrier collection. This approachis especially valuable for tracking the progress of organic solar cells, [...

    Spin-coated planar Sb2_{2}S3_{3} hybrid solar cells approaching 5% efficiency

    No full text
    Antimony sulfide solar cells have demonstrated an efficiency exceeding 7% when assembled in an extremely thin absorber configuration deposited via chemical bath deposition. More recently, less complex, planar geometries were obtained from simple spin-coating approaches, but the device efficiency still lags behind. We compare two processing routes based on different precursors reported in the literature. By studying the film morphology, sub-bandgap absorption and solar cell performance, improved annealing procedures are found and the crystallization temperature is shown to be critical. In order to determine the optimized processing conditions, the role of the polymeric hole transport material is discussed. The efficiency of our best solar cells exceeds previous reports for each processing route, and our champion device displays one of the highest efficiencies reported for planar antimony sulfide solar cells

    Charge transfer state characterization and voltage losses of organic solar cells

    No full text
    A correct determination of voltage losses is crucial for the development of organic solar cells (OSCs) with improved performance. This requires an in-depth understanding of the properties of interfacial charge transfer (CT) states, which not only set the upper limit for the open-circuit voltage of a system, but also govern radiative and non-radiative recombination processes. Over the last decade, different approaches have emerged to classify voltage losses in OSCs that rely on a generic detailed balance approach or additionally include CT state parameters that are specific to OSCs. In the latter case, a correct determination of CT state properties is paramount. In this work, we summarize the different frameworks used today to calculate voltage losses and provide an in-depth discussion of the currently most important models used to characterize CT state properties from absorption and emission data of organic thin films and solar cells. We also address practical concerns during the data recording, analysis, and fitting process. Departing from the classical two-state Marcus theory approach, we discuss the importance of quantized molecular vibrations and energetic hybridization effects in organic donor-acceptor systems with the goal to providing the reader with a detailed understanding of when each model is most appropriate

    Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

    No full text
    Antimony sulfide solar cells have demonstrated an efficiency exceeding 7% when assembled in an extremely thin absorber configuration deposited via chemical bath deposition. More recently, less complex, planar geometries were obtained from simple spin-coating approaches, but the device efficiency still lags behind. We compare two processing routes based on different precursors reported in the literature. By studying the film morphology, sub-bandgap absorption and solar cell performance, improved annealing procedures are found and the crystallization temperature is shown to be critical. In order to determine the optimized processing conditions, the role of the polymeric hole transport material is discussed. The efficiency of our best solar cells exceeds previous reports for each processing route, and our champion device displays one of the highest efficiencies reported for planar antimony sulfide solar cells

    Figures of Merit Guiding Research on Organic Solar Cells

    No full text
    While substantial progress in the efficiency of polymer-based solar cells was possible by optimizing the energy levels of the polymer and more recently also the acceptor molecule, further progress beyond 10% efficiency requires a number of criteria to be fulfilled simultaneously, namely, low energy-level offsets at the donor–acceptor heterojunction, low open-circuit voltage losses due to nonradiative recombination, and efficient charge transport and collection. In this feature article we discuss these criteria considering thermodynamic limits, their correlation to photocurrent and photovoltage, and effects on the fill factor. Each criterion is quantified by a figure of merit (FOM) that directly relates to device performance. To ensure a wide applicability, we focus on FOMs that are easily accessible from common experiments. We demonstrate the relevance of these FOMs by looking at the historic and recent achievements of organic solar cells. We hope that the presented FOMs are or will become a valuable tool to evaluate, monitor, and guide further development of new organic absorber materials for solar cells
    corecore