5 research outputs found

    Identification of human Kir2.2 (KCNJ12) gene encoding functional inward rectifier potassium channel in both mammalian cells and Xenopus oocytes

    Get PDF
    AbstractArginine residue at position 285 (R285) in the intracellular C-terminal domain of inward rectifier potassium channel Kir2.2 is conserved in many species, but missing in previously reported human Kir2.2 sequences. We here identified the human Kir2.2 gene in normal individuals, which contained R285 in the deduced amino-acid sequence (hKir2.2/R285). All 30 individuals we examined were homozygous for Kir2.2/R285 gene. The hKir2.2/R285 was electrophysiologically functional in both mammalian cells and Xenopus oocytes. However, the hKir2.2 missing R285 was functional only in Xenopus oocytes, but not in mammalian cells. Thus, R285 in Kir2.2 is important for its functional expression in mammalian cells

    Versatile Assays for High Throughput Screening for Activators or Inhibitors of Intracellular Proteases and Their Cellular Regulators

    Get PDF
    BACKGROUND: Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026; FINDINGS: We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs. The utility of these versatile assay components and their application for screening strategies was validated for all ten human Caspases, a family of intracellular proteases involved in cell death and inflammation, including implementation of assays for high throughput screening (HTS) of chemical libraries and functional screening of cDNA libraries. The versatility of the technology was also demonstrated for human autophagins, cysteine proteases involved in autophagy. CONCLUSIONS: Altogether, the yeast-based systems described here for monitoring activity of ectopically expressed mammalian proteases provide a fascile platform for functional genomics and chemical library screening

    Coupling of GABA B

    No full text
    corecore