2,304 research outputs found

    ADTR: Anomaly Detection Transformer with Feature Reconstruction

    Full text link
    Anomaly detection with only prior knowledge from normal samples attracts more attention because of the lack of anomaly samples. Existing CNN-based pixel reconstruction approaches suffer from two concerns. First, the reconstruction source and target are raw pixel values that contain indistinguishable semantic information. Second, CNN tends to reconstruct both normal samples and anomalies well, making them still hard to distinguish. In this paper, we propose Anomaly Detection TRansformer (ADTR) to apply a transformer to reconstruct pre-trained features. The pre-trained features contain distinguishable semantic information. Also, the adoption of transformer limits to reconstruct anomalies well such that anomalies could be detected easily once the reconstruction fails. Moreover, we propose novel loss functions to make our approach compatible with the normal-sample-only case and the anomaly-available case with both image-level and pixel-level labeled anomalies. The performance could be further improved by adding simple synthetic or external irrelevant anomalies. Extensive experiments are conducted on anomaly detection datasets including MVTec-AD and CIFAR-10. Our method achieves superior performance compared with all baselines.Comment: Accepted by ICONIP 202

    Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very useful to develop a computational approach for predicting the network of substrate-enzyme-product triads.</p> <p>Results</p> <p>A mathematical model for predicting the network of substrate-enzyme-product triads was developed. Meanwhile, a benchmark dataset was constructed that contains 744,192 substrate-enzyme-product triads, of which 14,592 are networking triads, and 729,600 are non-networking triads; i.e., the number of the negative triads was about 50 times the number of the positive triads. The molecular graph was introduced to calculate the similarity between the substrate compounds and between the product compounds, while the functional domain composition was introduced to calculate the similarity between enzyme molecules. The nearest neighbour algorithm was utilized as a prediction engine, in which a novel metric was introduced to measure the "nearness" between triads. To train and test the prediction engine, one tenth of the positive triads and one tenth of the negative triads were randomly picked from the benchmark dataset as the testing samples, while the remaining were used to train the prediction model. It was observed that the overall success rate in predicting the network for the testing samples was 98.71%, with 95.41% success rate for the 1,460 testing networking triads and 98.77% for the 72,960 testing non-networking triads.</p> <p>Conclusions</p> <p>It is quite promising and encouraged to use the molecular graph to calculate the similarity between compounds and use the functional domain composition to calculate the similarity between enzymes for studying the substrate-enzyme-product network system. The software is available upon request.</p

    Long wavelength single photon like driven photolysis via triplet triplet annihilation

    Get PDF
    Photolysis has enabled the occurrence of numerous discoveries in chemistry, drug discovery and biology. However, there is a dearth of efficient long wavelength light mediated photolysis. Here, we report general and efficient long wavelength single photon method for a wide array of photolytic molecules via triplet-triplet annihilation photolysis. This method is versatile and LEGO -like. The light partners (the photosensitizers and the photolytic molecules) can be energetically matched to adapt to an extensive range of electromagnetic spectrum wavelengths and the diversified chemical structures of photoremovable protecting groups, photolabile linkages, as well as a broad array of targeted molecules. Compared to the existing photolysis methods, our strategy of triplet-triplet annihilation photolysis not only exhibits superior reaction yields, but also resolves the photodamage problem, regardless of whether they are single photon or multiple photon associated. Furthermore, the biological promise of this LEGO system was illustrated via developing ambient air-stable nanoparticles capable of triplet-triplet annihilation photolysis

    AdaptivePose++: A Powerful Single-Stage Network for Multi-Person Pose Regression

    Full text link
    Multi-person pose estimation generally follows top-down and bottom-up paradigms. Both of them use an extra stage (e.g.,\boldsymbol{e.g.,} human detection in top-down paradigm or grouping process in bottom-up paradigm) to build the relationship between the human instance and corresponding keypoints, thus leading to the high computation cost and redundant two-stage pipeline. To address the above issue, we propose to represent the human parts as adaptive points and introduce a fine-grained body representation method. The novel body representation is able to sufficiently encode the diverse pose information and effectively model the relationship between the human instance and corresponding keypoints in a single-forward pass. With the proposed body representation, we further deliver a compact single-stage multi-person pose regression network, termed as AdaptivePose. During inference, our proposed network only needs a single-step decode operation to form the multi-person pose without complex post-processes and refinements. We employ AdaptivePose for both 2D/3D multi-person pose estimation tasks to verify the effectiveness of AdaptivePose. Without any bells and whistles, we achieve the most competitive performance on MS COCO and CrowdPose in terms of accuracy and speed. Furthermore, the outstanding performance on MuCo-3DHP and MuPoTS-3D further demonstrates the effectiveness and generalizability on 3D scenes. Code is available at https://github.com/buptxyb666/AdaptivePose.Comment: Submit to IEEE TCSVT; 11 pages. arXiv admin note: text overlap with arXiv:2112.1363

    AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking

    Full text link
    User modeling, which aims to capture users' characteristics or interests, heavily relies on task-specific labeled data and suffers from the data sparsity issue. Several recent studies tackled this problem by pre-training the user model on massive user behavior sequences with a contrastive learning task. Generally, these methods assume different views of the same behavior sequence constructed via data augmentation are semantically consistent, i.e., reflecting similar characteristics or interests of the user, and thus maximizing their agreement in the feature space. However, due to the diverse interests and heavy noise in user behaviors, existing augmentation methods tend to lose certain characteristics of the user or introduce noisy behaviors. Thus, forcing the user model to directly maximize the similarity between the augmented views may result in a negative transfer. To this end, we propose to replace the contrastive learning task with a new pretext task: Augmentation-Adaptive SelfSupervised Ranking (AdaptSSR), which alleviates the requirement of semantic consistency between the augmented views while pre-training a discriminative user model. Specifically, we adopt a multiple pairwise ranking loss which trains the user model to capture the similarity orders between the implicitly augmented view, the explicitly augmented view, and views from other users. We further employ an in-batch hard negative sampling strategy to facilitate model training. Moreover, considering the distinct impacts of data augmentation on different behavior sequences, we design an augmentation-adaptive fusion mechanism to automatically adjust the similarity order constraint applied to each sample based on the estimated similarity between the augmented views. Extensive experiments on both public and industrial datasets with six downstream tasks verify the effectiveness of AdaptSSR.Comment: Accepted by NeurIPS 202

    A Trace-restricted Kronecker-Factored Approximation to Natural Gradient

    Full text link
    Second-order optimization methods have the ability to accelerate convergence by modifying the gradient through the curvature matrix. There have been many attempts to use second-order optimization methods for training deep neural networks. Inspired by diagonal approximations and factored approximations such as Kronecker-Factored Approximate Curvature (KFAC), we propose a new approximation to the Fisher information matrix (FIM) called Trace-restricted Kronecker-factored Approximate Curvature (TKFAC) in this work, which can hold the certain trace relationship between the exact and the approximate FIM. In TKFAC, we decompose each block of the approximate FIM as a Kronecker product of two smaller matrices and scaled by a coefficient related to trace. We theoretically analyze TKFAC's approximation error and give an upper bound of it. We also propose a new damping technique for TKFAC on convolutional neural networks to maintain the superiority of second-order optimization methods during training. Experiments show that our method has better performance compared with several state-of-the-art algorithms on some deep network architectures

    Soil Carbon Biogeochemistry in Arid and Semiarid Forests

    Get PDF
    Soil is the largest carbon pool in the terrestrial ecosystem. Even small changes in the soil carbon pool would have huge impacts on atmospheric CO2 concentrations and thus mitigate or intensify global warming. Global forest contains 383 ± 30 × 1015 g carbon stock in soils to a 1-m depth, which is approximately 50% of the carbon stored in the atmosphere. Arid and semiarid areas with more than 30% of the world’s land surface are characterized by low and sporadic moisture availability and sparse or discontinuous vegetation, both spatially and temporally. Vegetation, water, and nutrients are intimately coupled in the semiarid environments with strong feedbacks and interactions occurring across fine to coarse scales. In this chapter, we will review the cutting-edge work in forest soil carbon biogeochemistry undertaken in the last three decades. We also attempt to synthesize recent advances in soil carbon biogeochemistry in arid and semiarid regions and discuss future research needs and directions
    • …
    corecore