40 research outputs found
Gene expression profile and pathogenicity of biofilm-forming Prevotella intermedia strain 17
<p>Abstract</p> <p>Background</p> <p><it>Prevotella intermedia </it>(<it>P. intermedia</it>), a gram-negative, black-pigmented anaerobic rod, has been implicated in the development of chronic oral infection. <it>P. intermedia </it>strain 17 was isolated from a chronic periodontitis lesion in our laboratory and described as a viscous material producing strain. The stock cultures of this strain still maintain the ability to produce large amounts of viscous materials in the spent culture media and form biofilm-like structures. Chemical analyses of this viscous material showed that they were mainly composed of neutral sugars with mannose constituting 83% of the polysaccharides. To examine the biological effect of the extracellular viscous materials, we identified and obtained a naturally-occurring variant strain that lacked the ability to produce viscous materials <it>in vitro </it>from our stock culture collections of strain 17, designated as 17-2. We compared these two strains (strains 17 versus 17-2) in terms of their capacities to form biofilms and to induce abscess formation in mice as an indication of their pathogenicity. Further, gene expression profiles between these two strains in planktonic condition and gene expression patterns of strain 17 in solid and liquid cultures were also compared using microarray assays.</p> <p>Results</p> <p>Strain 17 induced greater abscess formation in mice as compared to that of the variant. Strain 17, but not 17-2 showed an ability to interfere with the phagocytic activity of human neutrophils. Expression of several genes which including those for heat shock proteins (DnaJ, DnaK, ClpB, GroEL and GroES) were up-regulated two to four-fold with statistical significance in biofilm-forming strain 17 as compared to the variant strain 17-2. Strain 17 in solid culture condition exhibited more than eight-fold up-regulated expression levels of several genes which including those for levanase, extracytoplasmic function-subfamily sigma factor (σ<sup>E</sup>; putative) and polysialic acid transport protein (KpsD), as compared to those of strain 17 in liquid culture media.</p> <p>Conclusion</p> <p>These results demonstrate that the capacity to form biofilm in <it>P. intermedia </it>contribute to their resistance against host innate defence responses.</p
Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms
<p>Abstract</p> <p>Background</p> <p>Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built.</p> <p>Methods</p> <p>This study evaluates the role of EPS in <it>Prevotella intermedia </it>for the expression of virulence. This evaluation was accomplished by comparing EPS-producing <it>P. intermedia </it>strains 17 and OD1-16 with non-producing <it>P. intermedia </it>ATCC 25611 and <it>Porphyromonas gingivalis </it>strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis.</p> <p>Results</p> <p>EPS-producing <it>P. intermedia </it>strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 10<sup>7 </sup>colony-forming units (CFU). In comparison, <it>P. intermedia </it>ATCC 25611 and <it>P. gingivalis </it>ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (10<sup>9 </sup>CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, <it>P. intermedia </it>strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes.</p> <p>Conclusions</p> <p>These results demonstrate that the production of EPS by <it>P. intermedia </it>strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.</p
Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models
Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents
Development and Evaluation of an In-House Real-Time RT-PCR Targeting nsp10 Gene for SARS-CoV-2 Detection
The emergence of SARS-CoV-2 mutations poses significant challenges to diagnostic tests, as these mutations can reduce the sensitivity of commonly used RT-PCR assays. Therefore, there is a need to design diagnostic assays with multiple targets to enhance sensitivity. In this study, we identified a novel diagnostic target, the nsp10 gene, using nanopore sequencing. Firstly, we determined the analytical sensitivity and specificity of our COVID-19-nsp10 assay. The COVID-19-nsp10 assay had a limit of detection of 74 copies/mL (95% confidence interval: 48–299 copies/mL) and did not show cross-reactivity with other respiratory viruses. Next, we determined the diagnostic performance of the COVID-19-nsp10 assay using 261 respiratory specimens, including 147 SARS-CoV-2-positive specimens belonging to the ancestral strain and Alpha, Beta, Gamma, Delta, Mu, Eta, Kappa, Theta and Omicron lineages. Using a LightMix E-gene RT-PCR assay as the reference method, the diagnostic sensitivity and specificity of the COVID-19-nsp10 assay were found to be 100%. The median Cp values for the LightMix E-gene RT-PCR and our COVID-19-nsp10 RT-PCR were 22.48 (range: 12.95–36.60) and 25.94 (range 16.37–36.87), respectively. The Cp values of the COVID-19-nsp10 RT-PCR assay correlated well with those of the LightMix E-gene RT-PCR assay (Spearman’s ρ = 0.968; p < 0.0001). In conclusion, nsp10 is a suitable target for a SARS-CoV-2 RT-PCR assay
Correlations of Myeloperoxidase (MPO), Adenosine deaminase (ADA), C–C motif chemokine 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in the nasopharyngeal specimens with the diagnosis and severity of SARS-CoV-2 infections
ABSTRACTCytokine dynamics in patients with coronavirus disease 2019 (COVID-19) have been studied in blood but seldomly in respiratory specimens. We studied different cell markers and cytokines in fresh nasopharyngeal swab specimens for the diagnosis and for stratifying the severity of COVID-19. This was a retrospective case-control study comparing Myeloperoxidase (MPO), Adenosine deaminase (ADA), C–C motif chemokine ligand 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in 490 (327 patients and 163 control) nasopharyngeal specimens from 317 (154 COVID-19 and 163 control) hospitalized patients. Of the 154 COVID-19 cases, 46 died. Both total and normalized MPO, ADA, CCL22, TNFα, and IL-6 mRNA expression levels were significantly higher in the nasopharyngeal specimens of infected patients when compared with controls, with ADA showing better performance (OR 5.703, 95% CI 3.424–9.500, p < 0.001). Receiver operating characteristics (ROC) curve showed that the cut-off value of normalized ADA mRNA level at 2.37 × 10–3 had a sensitivity of 81.8% and specificity of 83.4%. While patients with severe COVID-19 had more respiratory symptoms, and elevated lactate dehydrogenase, multivariate analysis showed that severe COVID-19 patients had lower CCL22 mRNA (OR 0.211, 95% CI 0.060–0.746, p = 0.016) in nasopharyngeal specimens, while lymphocyte count, C-reactive protein, and viral load in nasopharyngeal specimens did not correlate with disease severity. In summary, ADA appears to be a better biomarker to differentiate between infected and uninfected patients, while CCL22 has the potential in stratifying the severity of COVID-19