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1. Introduction  

Exopolysaccharide (EPS) productivities in many bacteria have been associated with 

pathogenicity in mammalian hosts as providing extracellular matrices to form biofilm  

(Costerton et al., 1995). Bacteria assuming biofilm-forming capacity have enormous 

advantages in establishing persistent infections (Costerton et al., 1999). Chronic periodontitis 

is caused by dental plaque known as a complex biofilm which consists of several hundred 

different species of bacteria (Chen, 2001; Socransky and Haffajee, 2002; Lovegrove, 2004). 

While sucrose-derived homopolysaccharides are well known substrates which mediate 

adhesion of bacteria to the tooth surface and co-aggregation interactions between species of 

oral bacteria in the dental plaque (Russell, 2009), recent studies suggest that each bacterium 

produces distinctive EPS components in a sucrose-independent manner and can form so 

called single species biofilm (Branda et al., 2005). In the oral cavity, several species of oral 

bacteria are known to produce their own EPS with this manner (Okuda et al., 1987; Dyer 

and Bolton, 1985; Kaplan et al., 2004; Yamane et al., 2005; Yamanaka et al., 2009; Yamanaka 

et al., 2010). In this chapter, we will describe a possibility that a single species biofilm in the 

oral cavity can cause persistent chronic periodontitis along with the importance of dental 

plaque formation and maturation with sucrose-derived polysaccharides. 

2. Dental plaque formation with sucrose-derived polysaccharides 

Dental plaque is defined as a community of oral bacteria on a tooth surface in which 
microorganisms are found embedded in EPS and intimately communicate each other via 
several different communication pathways such as auto-/co-aggregation, metabolic 
communication, quorum sensing and competent stimulation peptides (Rickard et al., 2008). 
A recent study using pyrosequencing technique showed that dental plaque harbors nearly 
7000 species-level phylotypes (Keijser et al., 2008). Therefore, dental plaque is described as 

www.intechopen.com



 
Pathogenesis and Treatment of Periodontitis 

 

20

mix-/multi-species biofilm as well. A widely accepted theory of dental plaque formation is 
an organized sequence of events (Marsh, 2004). 1) The enamel surface of tooth is covered by 
acquired pellicle which consists of salivary proteins. 2) Initial colonizers of oral bacteria 
adhere on the tooth surface via physico-chemical interactions between the bacterial cell 
surface and the pellicle matrices, and then establish firmer adhesin-receptor mediated 
attachment. A study (Nyvad and Kilian, 1987) using cultivation technique showed that the 
initial colonizers are predominated by streptococci such as Streptococcus sanguinis, 
Streptococcus oralis and Streptococcus mitis. Gram-positive rod Actinomyces spp, veillonellae, 
and Rothia mucilaginosa were frequently found in the early stage of plaque formation (Nyvad 
and Kilian, 1987). After the colonization of these pioneers, bacteria that have 
glucosyltransferase (GTF) or fructosyltransferase (FTF) start to provide sucrose-derived EPS 
as plaque substrates (Russell, 2009). The EPS can be soluble or insoluble and the latter make 
a major contribution to the structural integrity of dental plaque and can consolidate the 
attachment of bacteria in dental plaque. Among previously known initial colonizers, S. 
sanguinis can provide water-soluble/insoluble EPSs because this organism possesses both 
GTF and FTF. In this environmental niche, co-adhesion between initial colonizers and 
secondary colonizers occurs. 4) Then, more secondary species adhere to the developing 
dental plaque resulting in the increased number of bacteria through the continued 
integration and cell divisions (Rickard et al., 2008). 5) When dental plaque as multi-species 
biofilm has developed and become matured, the flora gradually changes from Gram-
positive cocci and Actinomyces to the one containing certain amount of Gram-negative 
organisms (Chen, 2001; Herrera et al., 2008; Paster et al., 2001; Socransky et al., 1998). The 
change in dental plaque flora is also associated with the extension of the plaque 
subgingivally, and it is evidently shown that this phenomenon causes the plaque-associated 
complex symptoms in periodontal tissues (Darby and Curtis, 2001; Dahlen, 1993). This 
theory well explains the dental plaque formation, maturation and the plaque-associated 
complex in modern day since the production and consumption of sucrose increased 
dramatically in nineteenth century. However, considering the facts that ancient specimens 
showed carious lesions localized on the root surfaces and simultaneous absence of coronal 
lesions, oral microorganisms might have a strategy in sucrose-independent manner to form 
dental plaque on the tooth surface around the gingival crevice. The periodontal bone loss is 
also found on the ancient specimens (Meller et al., 2009; Gerloni et al., 2009). Therefore, it is 
conceivable that the dental plaque developed in sucrose-independent manner could be 
pathogenic for periodontal tissues and can cause chronic periodontitis lesions. 

2.1 Initial colonizers on the tooth surface and their capacity to form biofilm  

More recent studies using molecular methods and a retrievable enamel chip model have 
revealed a new line-up of initial colonizers though the early dental plaque microflora varies 
at subject-specific basis (Diaz et al., 2006; Kolenbrander et al., 2005). In initial plaque on the 
chip at four to eight hours, Streptococcus spp. was dominant while Veillonella, Gemella, 
Prevotella, Niesseria, Actinomyces and Rothia were also frequently found. Among streptococci, 
S. oralis, S. mitis, S. infantis, S. sanguinis, S. parasanguinis, S. gordonii, S. cristatus and S. bovis 
were found in the early dental plaque. Although this bacterial community can be given 
substrates by bacteria which synthesize EPS in sucrose-dependent manner, we recently 
found that several bacteria newly nominated as initial colonizers have the ability to produce 
their own EPS in sucrose-independent manner and to form biofilms.  
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The presence of dense meshwork structures under scanning electron microscopy (SEM) is a 

typical feature for biofilm forming organisms. The appearances of Escherichia hermannii  

(Yamanaka et al., 2010) with or without EPS production in SEM observation are shown in 

Figure 1. E. hermannii YS-11 isolated from persistent apical periodontitis lesions produced 

EPS and exhibited cell surface meshwork structures (Fig. 1A). The meshwork structures of 

E. hermannii YS-11 disappeared when wzt, one of the ABC-transporter genes, was disrupted 

by transposon random insertion mutagenesis (Fig. 1B). Complementation of this gene to the 

transposant restored and dramatically augmented the formation of meshwork structures 

(Fig. 1, C and D). Such phenotypes are similar to those of Pseudomonas aeruginosa, a 

prototype of biofilm-forming bacteria (Kobayashi, 1995; Yasuda et al., 1999), Escherichia coli 

(Prigent-Combaret et al., 2000; Uhlich et al., 2006), Salmonella (Anriany et al., 2001; Jain and 

Chen, 2006), and Vibrio cholerae (Wai et al., 1998).  

 

Fig. 1. Scanning electron micrographs showing surface structures of Escherichia hermannii 
strain YS-11 (A; wild type), strain 455 (B; wzt- transposant) and strain 455-LM  
(strain 455 with pWZT; C: without IPTG induction; D: with IPTG induction). Bars = 3 μm  

When we observed the surface structures of isolates from saliva of healthy volunteers or 
from chronic peripheral periodontitis lesions by SEM, similar cell surface-associated 
meshwork-like structures were observed on Neisseria, S. parasanguinis, S. mitis, Rothia 
dentocariosa, Rothia mucilaginosa (Yamane et al., 2010), Prevotella intermedia (Yamanaka et al., 
2009), Prevotella nigrescens (Yamane et al., 2005) and Actinomyces oris (Fig. 2). We have 
investigated the clinical isolates of P. intermedia and P. nigrescens with meshwork structures 
and found that the organisms can produce their own unique EPS in sucrose-independent 
manner (see below). However, it is still unclear whether other initial colonizers posses the 
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meshwork structures with the same manner. It is important to note that similar tubule-like 
structures are formed by bacterial nanotubes (Dubey and Ben-Yehuda, 2011) or amyloids 
(Dueholm et al., 2010).  

 
Fig. 2. Scanning electron micrographs showing cell surface structures of oral bacteria known 
as initial colonizers. A colony of each clinical isolate was used for SEM observation and 
identification by 16S rRNA gene sequencing. Bars = 2 μm.  

2.1.1 Single species biofilm with unique EPS production on the outside of oral cavity 

Practically all bacteria living in their own environmental niche have the capacity to form 

biofilm by a self-synthesized matrix that holds the cells together and tightly attaches the 

bacterial cells to the underlying surface. Polysaccharide is a major component of the matrix 
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in most bacterial biofilms although recent studies have shown that constituents of biofilm 

matrix vary and that extracellular nucleic acids (Wu and Xi, 2009) or secreted proteins 

(Latasa et al., 2006) are also used as the matrix. Recent investigations have revealed that each 

biofilm-forming bacterium produces distinctive EPS components e.g. alginate and/or Psl 

found in P. aeruginosa (Ryder et al., 2007), acidic polysaccharide of Burkholderia cepacia 

(Cerantola et al., 1999), collanic acid, poly-β-1,6-GlcNAc (PGA) or cellulose found in E. coli 

(Junkins and Doyle, 1992) (Wang et al., 2004; Danese et al., 2000), cellulose of Salmonella 

(Solano et al., 2002; Zogaj et al., 2001), amorphous EPS containing N-acetylglucosamine 

(GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose of V. cholerae (Wai et al., 1998; 

Yildiz and Visick, 2009), polysaccharide intercellular adhesin (PIA) of Staphylococcus (Rupp 

et al., 1999), and glucose and mannose rich components found in Bacillus subtilis biofilm 

(Hamon and Lazazzera, 2001; Ren et al., 2004; Yamane et al., 2009). An enteric pathogen 

Campylobacter jejuni produces EPS that reacts with calcofulor white, indicating the 
polysaccharide harbors β1-3 and/or β1-4 linkages. The production of this EPS is 

considered to be involved in the stress response of this organism together with its surface-

associated lipooligosaccharide and capsular polysaccharides (McLennan et al., 2008). 

Persistent infections caused by biofilm-forming bacteria have been abundantly reported, 

however, understanding the molecular basis for the synthesis of biofilm matrices is still 

limited. The bacteria assuming the ability to produce their own polysaccharides and causing 

infectious diseases (biofilm infections) are listed in Table 1. 

 

EPS-producing bacteria Constituents of EPS Biofilm infection 

Pseudomonas aeruginosa 

Alginate, Psl (mannose- and galactose- 

rich polysaccharide) or Pel (glucose 

rich polysaccharide) 

Cystic fibrosis pneumonia, 

contact lenses infection, 

central venous catheter 

infections 

Burkholderia cepacia Acidic branched heptasaccharide 
Cystic fibrosis pneumonia 

(cepacia syndrome) 

Escherichia coli 
Cellulose, colonic acid or poly-β-1,6- 

GlcNAc (PGA) 

Intestinal disorders, urinary 

tract infections, urinary 

catheter infections 

Vibrio cholerae 
Glucose- and galactose-rich 

polysaccharide 

Cholera, diarrheal diseases 

(the EPS protects this 

organism from environ- 

mental stress) 

Salmonella enterica serovar 

Typhimurium 
Cellulose Gastroenteritis 

Staphylococcus aureus 

Staphylococcus epidermidis 

Staphylococcal polysaccharide  

intercellular adhesion (PIA) 

Endocarditis, central 

venous catheter infections, 

urinary catheter infections 

Bacillus subtilis 
Glucose- and mannose-rich 

polysaccharide  

Opportunistic infections, 

apical periodontitis 

Campylobacter jejuni 
EPS contains β1-3 and/or β1-3 

linkages 
Bacterial gastroenteritis 

Table 1. EPS-producing bacteria on the outside of oral cavity, constituents of EPS and 
related diseases. 
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Oral streptococci such as anginosus group, mitis-group and salivarius-group and Rothia are 
known to cause biofilm infections on prosthetic heart valves and artificial voice prosthesis 
(Donlan, 2001). Interestingly, some clinical isolates of Streptococcus intermedius and 
Streptococcus salivarius exhibit dense meshwork structures around their cells suggesting 
these organisms can form single species biofilm on medical devices though we still do not 
know the constituents of the matrices (Matsumoto-Mashimo et al., 2008) (Fig. 3). 

 

Fig. 3. Scanning electron micrographs showing cell surface structures of clinically isolated  
S. intermedius and S. salivarius. Bars = 2 μm.  

2.1.2 Biofilm-forming bacteria from chronic periodontitis lesions and the chemical 
composition of their EPS  

As described above, several periodontopathic bacteria are known to produce EPS or 

capsular polysaccharides. The production of mannose-rich polysaccharide by 

Capnocytophaga ochracea has been reported (Dyer and Bolton, 1985). The mannose-rich EPS 

provides this organism with a protection from attack by the human innate immune 

system (Bolton et al., 1983). Kaplan et al. (2004) reported that Aggregatibacter 

actinomycetemcomitans has a gene cluster which is homologous to E. coli pgaABCD and 

encodes the production of poly-ß-1,6-GlcNAc (PGA) (Wang et al., 2004). We found that P. 

intermedia strain 17 produced a large amount of EPS, with mannose constituting more 

than 80% of the polysaccharides (Yamanaka et al., 2009). The growth of strain 17 was 

slower than that of P. intermedia ATCC 25611 (a reference strain for P. intermedia). 

Viscosity of spent culture media of strain 17 was higher than that of ATCC 25611. 

Transmission electron microscopy of negatively stained purified EPS showed fine fibrous 

structures that are formed in bundles. Meshwork structures were represented on latex 

beads coated with the purified EPS (Fig. 4).  

We have also reported that a clinical isolate of P. nigrescens can produce a copious amount of 
EPS consisting of mannose (88%), glucose (4.3%), fructose (2.7%), galactose (2.1%), arabinose 
(1%) and small amounts of xylose, rhamnose and ribose. Methylation analysis suggested 
that the EPS is composed of highly branched (1-2)-linked mannose residues (Yamane et al., 
2005). Okuda et al. (1987) reported that P. intermedia 25611, Porphyromonas gingivalis 381 and 
P. gingivalis ATCC 33277 had capsular structures around the cells and that the capsular 
polysaccharides extracted from P. gingivalis 381 contained galactose and glucose as their 
major constituents. P. gingivalis W83 is known to produce capsular polysaccharides, and the 
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genetic locus for capsule biosynthesis has been identified (Aduse-Opoku et al., 2006). 
However, these reference strains in our laboratory do not produce capsular polysaccharide 
or EPS. One possibility is that the tested strains had lost their ability to produce capsular 
polysaccharides or EPS because of multiple in vitro passages of the organisms in the 
laboratory. Although the molecular basis for biofilm formation in Rothia still needs to be 
elucidated, Yamane et al. (2010) determined the whole genome sequence of R.mucilaginosa 
DY-18, a clinical isolate from persistent apical periodontitis lesions with an ability to 
produce EPS and exhibit cell surface meshwork structures.  

 
 

 

Fig. 4. Comparison of growth (A), viscosity of spent culture media (B) and phenotype 
between P. intermedia strain 17 and ATCC 25611. Bars in C = 1 μm. Transmission electron 

micrograph of negatively stained purified EPS from P. intermedia 17 cultures (D).  
Bar = 500 nm. Meshwork structures represented on EPS-coated latex beads  
(2 μm in diameter)(E). Bars = 5 μm. 
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2.1.3 EPS productivity and biofilm phenotype as virulence factors  

It is evidently shown that the slime/EPS production is critical for bacteria to exhibit the 

resistance to the neutrophil phagocytosis, though some EPS are not essential to bacterial 

adherence to host cells or for systemic virulence. Jesaitis et al. (2003) demonstrated that 

human neutrophils that settled on P. aeruginosa biofilms became phagocytically engorged, 

partially degranulated, and engulfed planktonic bacteria released from the biofilms. 

Deighton et al. (1996) compared the virulence of slime-positive Staphylococcus epidermidis 

with that of slime-negative strain in a mouse model of subcutaneous infection and 

showed that biofilm-positive strains produced significantly more abscesses that persisted 

longer than biofilm-negative strains. Our previous studies showed that P. nigrescens as 

well as P. intermedia with mannose-rich EPS showed stronger ability to induce abscesses 

in mice than those of a naturally occurring variant or chemically-induced mutant that lack 

the ability to produce EPS. TEM observations revealed that test strains with mannose-rich 

EPS appeared to be recognized by human neutrophils but not internalized (Yamane et al., 

2005; Yamanaka et al., 2009). Leid et al. (2002) have shown that human neutrophils can 

easily penetrate S. aureus biofilms but fail to phagocytose the bacteria. Similarly, in the 

murine model of systemic infection, the deletion of ica locus necessary for the biosynthesis 

of surface polysaccharide of S. aureus significantly reduces its virulence. A study in the 

early 1970s clearly showed that addition of the slime from P. aeruginosa cultures to E. coli 

or S. aureus dramatically inhibited phagocytosis by neutrophils (Schwarzmann and Boring 

III, 1971). In our previous study, we observed the restoration of the induction of abscess 

formation in mice when the purified EPS from the biofilm-forming strain of P. nigrescens 

was added to the cultures of a biofilm-non-forming mutant and injected into mice 

(Yamane et al., 2005). Though we have to carefully investigate the possibility that multiple 

mutations exist in EPS negative variants and lead to the observed incapability to induce 

abscesses in mice, it is conceivable that biofilm bacteria being held together by EPS might 

present a huge physical challenge for phagocytosing neutrophils. As a consequence of 

these neutrophils being frustrated by their inability to phagocytose this bacterial mass, 

this might trigger the unregulated release of bactericidal compounds that could cause 

tissue injury as shown in the inflammatory pathway associated with lung injury or 

chronic wounds (Moraes et al., 2006; Bjarnsholt et al., 2008). The cellular components from 

neutrophils themselves are known to exert a stimulatory effect on the developing P. 

aeruginosa biofilm when the host fails to eradicate the infection. We recently compared the 

level of pathogenicity on the clinical strains of P. intermedia with EPS productivity to those 

of several laboratory reference strains of periodontopathic bacteria (P.intermedia ATCC 

25611, P. gingivalis ATCC 33277, P. gingivalis 381 and P. gingivalis W83; strains without 

producing polysaccharides as described above) in terms of the abscess formation in mice. 

EPS-producing P. intermedia strains 17 and OD1-16 induced abscess lesions in mice at 107 

CFU, but other periodontopathic bacteria did not when tested at this cell concentration 

(Yamanaka et al. 2011). Resistance of P. intermedia with EPS productivity against the 

phagocytic activity of human neutrophils was stronger than those of P. intermedia ATCC 

25611 and P. gingivalis ATCC 33277 that lack the capacity to produce polysaccharides (Fig. 

5). Therefore, it is plausible that the antiphagocytic effect of EPS confers the ability to P. 

intermedia to induce abscess in mice at a small inoculation size. 
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Fig. 5. Resistance of EPS-producing P. intermedia strain 17 against the phagocytic activity of 
human neutrophils. Test strains were co-cultured with human neutrophils for 90 min. 
Under transmission electron microscopy (TEM), 30 neutrophils were arbitrarily selected, 
and the number of bacterial cells engulfed in each cell was counted. Strain 17 cells were not 
engulfed by neutrophils. In contrast, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277 
cells were internalized and found within cytoplasmic vacuoles.  

3. Conclusion 

The matured dental plaque via the ordered sequence of events is undoubtedly a very 
important reservoir of periodontopathic pathogens. However, combined recent evidences 
together, it is plausible that initial colonizers including Gram-negative anaerobes can form 
biofilm by a self-synthesized matrix. If the initial colonizers assume an ability to produce 
EPS, this could contribute to the pathogenicity of the organisms by conferring their ability to 
evade the host’s innate defense response. Some of the initial colonizers who have formed 
their own biofilm might be recognized by neutrophils in the gingival crevice but the 
neutrophils can not eradicate the bacterial cells due to the existence of EPS as the matrix of 
biofilm. This could be one of many etiologies of tissue injury found in chronic periodontitis 
lesions. Our hypothetical idea is described in Figure 6.  
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Fig. 6. Schematic depiction of tissue injury by neutrophils frustrated with unsuccessful 
phagocytosis of EPS-producing bacterial cells.  

Finally, it is important to point out that many virulence phenotypes, especially the EPS 

productivity, expressed in natural environmental niches could be immediately lost through 

laboratory passages (Fux et al., 2005). Therefore, freshly isolated clinical strains are needed 

to re-evaluate the pathogenicity of periodontopathic bacteria isolated from the dental plaque 

or periodontal lesions.  
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