5,202 research outputs found

    Topological flat band models with arbitrary Chern numbers

    Full text link
    We report the theoretical discovery of a systematic scheme to produce topological flat bands (TFBs) with arbitrary Chern numbers. We find that generically a multi-orbital high Chern number TFB model can be constructed by considering multi-layer Chern number C=1 TFB models with enhanced translational symmetry. A series of models are presented as examples, including a two-band model on a triangular lattice with a Chern number C=3 and an NN-band square lattice model with C=NC=N for an arbitrary integer NN. In all these models, the flatness ratio for the TFBs is larger than 30 and increases with increasing Chern number. In the presence of appropriate inter-particle interactions, these models are likely to lead to the formation of novel Abelian and Non-Abelian fractional Chern insulators. As a simple example, we test the C=2 model with hardcore bosons at 1/3 filling and an intriguing fractional quantum Hall state is observed.Comment: 8 pages, 7 figure

    Ludwig’s angina in children

    Get PDF
    AbstractLudwig’s angina is a potentially life-threatening, rapidly spreading, bilateral cellulitis of the submandibular spaces. It uncommonly occurs in adults and children and its early recognition is paramount. With early diagnosis, airway observation and management, aggressive intravenous antibiotic therapy, and judicious surgical intervention, this disease should resolve without any complications. Here, we report a case of Ludwig’s angina in a 14-year-old boy. We also review the relevant anatomy and discuss the clinical presentation and current management of this disease

    Bidirectional outflows as evidence of magnetic reconnection leading to a solar microflare

    Full text link
    Magnetic reconnection is a rapid energy release process that is believed to be responsible for flares on the Sun and stars. Nevertheless, such flare-related reconnection is mostly detected to occur in the corona, while there have been few studies concerning the reconnection in the chromosphere or photosphere. Here we present both spectroscopic and imaging observations of magnetic reconnection in the chromosphere leading to a microflare. During the flare peak time, chromospheric line profiles show significant blueshifted/redshifted components on the two sides of the flaring site, corresponding to upflows and downflows with velocities of ±\pm(70--80) km s−1^{-1}, comparable with the local Alfv\'{e}n speed as expected by the reconnection in the chromosphere. The three-dimensional nonlinear force-free field configuration further discloses twisted field lines (a flux rope) at a low altitude, cospatial with the dark threads in He I 10830 \r{A} images. The instability of the flux rope may initiate the flare-related reconnection. These observations provide clear evidence of magnetic reconnection in the chromosphere and show the similar mechanisms of a microflare to those of major flares.Comment: 16 pages, 5 figures, accepted for publication in ApJ

    Artificial Gauge Field and Quantum Spin Hall States in a Conventional Two-dimensional Electron Gas

    Full text link
    Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/Inx_{x}Ga1−x_{1-x}As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band inversions between the neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.Comment: 9 pages and 4 figure
    • 

    corecore