1,116 research outputs found

    The plasmamembrane calmodulin–dependent calcium pump: a major regulator of nitric oxide synthase I

    Get PDF
    The plasma membrane calcium/calmodulin-dependent calcium ATPase (PMCA) (Shull, G.E., and J. Greeb. 1988. J. Biol. Chem. 263:8646–8657; Verma, A.K., A.G. Filoteo, D.R. Stanford, E.D. Wieben, J.T. Penniston, E.E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, et al. 1988. J. Biol. Chem. 263:14152–14159; Carafoli, E. 1997. Basic Res. Cardiol. 92:59–61) has been proposed to be a regulator of calcium homeostasis and signal transduction networks of the cell. However, little is known about its precise mechanisms of action. Knock-out of (mainly neuronal) isoform 2 of the enzyme resulted in hearing loss and balance deficits due to severe inner ear defects, affecting formation and maintenance of otoconia (Kozel, P.J., R.A. Friedman, L.C. Erway, E.N. Yamoah, L.H. Liu, T. Riddle, J.J. Duffy, T. Doetschman, M.L. Miller, E.L. Cardell, and G.E. Shull. 1998. J. Biol. Chem. 273:18693–18696). Here we demonstrate that PMCA 4b is a negative regulator of nitric oxide synthase I (NOS-I, nNOS) in HEK293 embryonic kidney and neuro-2a neuroblastoma cell models. Binding of PMCA 4b to NOS-I was mediated by interaction of the COOH-terminal amino acids of PMCA 4b and the PDZ domain of NOS-I (PDZ: PSD 95/Dlg/ZO-1 protein domain). Increasing expression of wild-type PMCA 4b (but not PMCA mutants unable to bind PDZ domains or devoid of Ca2+-transporting activity) dramatically downregulated NO synthesis from wild-type NOS-I. A NOS-I mutant lacking the PDZ domain was not regulated by PMCA, demonstrating the specific nature of the PMCA–NOS-I interaction. Elucidation of PMCA as an interaction partner and major regulator of NOS-I provides evidence for a new dimension of integration between calcium and NO signaling pathways

    Mitigation of Unmodeled Error to Improve the Accuracy of Multi-GNSS PPP for Crustal Deformation Monitoring

    Get PDF
    High-rate multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) has been recognized as an efficient and reliable technique for large earthquake monitoring. However, the displacements derived from PPP are often overwhelmed by the centimeter-level noise, therefore they are usually unable to detect slight deformations which could provide new findings for geophysics. In this paper, Global Positioning System (GPS), GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), and BeiDou navigation satellite system (BDS) data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake were used to further exploit the capability of BDS-only and multi-GNSS PPP in deformation monitoring by applying sidereal filtering (SF) in the observation domain. The equation that unifies the residuals for the uncombined and undifferenced (UCUD) PPP solution on different frequencies was derived, which could greatly reduce the complexity of data processing. An unanticipated long-term periodic error term of up to ± 3 cm was found in the phase residuals associated with BDS satellites in geostationary Earth orbit (GEO), which is not due to multipath originated from the ground but is in fact satellite dependent. The period of this error is mainly longer than 2000 s and cannot be alleviated by using multi-GNSS. Compared with solutions without sidereal filtering, the application of the SF approach dramatically improves the positioning precision with respect to the weekly averaged positioning solution, by 75.2%, 42.8%, and 56.7% to 2.00, 2.23, and 5.58 cm in the case of BDS-only PPP in the east, north, and up components, respectively, and 71.2%, 27.7%, and 37.9% to 1.25, 0.81, and 3.79 cm in the case of GPS/GLONASS/BDS combined PPP, respectively. The GPS/GLONASS/BDS combined solutions augmented by the SF successfully suppress the GNSS noise, which contributes to the detection of the true seismic signal and is beneficial to the pre- and post-seismic signal analysis

    Myocardial aging as a T-cell–mediated phenomenon

    Get PDF
    In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4+ Foxp3- (forkhead box P3) IFN-γ+ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population.info:eu-repo/semantics/publishedVersio

    Defective thrombus formation in mice lacking coagulation factor XII

    Get PDF
    Blood coagulation is thought to be initiated by plasma protease factor VIIa in complex with the membrane protein tissue factor. In contrast, coagulation factor XII (FXII)–mediated fibrin formation is not believed to play an important role for coagulation in vivo. We used FXII-deficient mice to study the contributions of FXII to thrombus formation in vivo. Intravital fluorescence microscopy and blood flow measurements in three distinct arterial beds revealed a severe defect in the formation and stabilization of platelet-rich occlusive thrombi. Although FXII-deficient mice do not experience spontaneous or excessive injury-related bleeding, they are protected against collagen- and epinephrine-induced thromboembolism. Infusion of human FXII into FXII-null mice restored injury-induced thrombus formation. These unexpected findings change the long-standing concept that the FXII-induced intrinsic coagulation pathway is not important for clotting in vivo. The results establish FXII as essential for thrombus formation, and identify FXII as a novel target for antithrombotic therapy

    Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    Get PDF
    BACKGROUND: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. RESULTS: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. CONCLUSIONS: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities

    Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis

    Get PDF
    Formation of fibrin is critical for limiting blood loss at a site of blood vessel injury (hemostasis), but may also contribute to vascular thrombosis. Hereditary deficiency of factor XII (FXII), the protease that triggers the intrinsic pathway of coagulation in vitro, is not associated with spontaneous or excessive injury-related bleeding, indicating FXII is not required for hemostasis. We demonstrate that deficiency or inhibition of FXII protects mice from ischemic brain injury. After transient middle cerebral artery occlusion, the volume of infarcted brain in FXII-deficient and FXII inhibitor–treated mice was substantially less than in wild-type controls, without an increase in infarct-associated hemorrhage. Targeting FXII reduced fibrin formation in ischemic vessels, and reconstitution of FXII-deficient mice with human FXII restored fibrin deposition. Mice deficient in the FXII substrate factor XI were similarly protected from vessel-occluding fibrin formation, suggesting that FXII contributes to pathologic clotting through the intrinsic pathway. These data demonstrate that some processes involved in pathologic thrombus formation are distinct from those required for normal hemostasis. As FXII appears to be instrumental in pathologic fibrin formation but dispensable for hemostasis, FXII inhibition may offer a selective and safe strategy for preventing stroke and other thromboembolic diseases

    Ablation of C-type natriuretic peptide/cGMP signaling in fibroblasts exacerbates adverse cardiac remodeling in mice

    Get PDF
    Excessive activation of cardiac fibroblasts (CFs) in response to injury provokes cardiac fibrosis, stiffness, and failure. The local mediators counter-regulating this response remain unclear. Exogenous C-type natriuretic peptide (CNP) exerted antifibrotic effects in preclinical models. To unravel the role of the endogenous hormone, we generated mice with fibroblast-restricted deletion (KO) of guanylyl cyclase-B (GC-B), the cGMP-synthesizing CNP receptor.CNP activated GC-B/cGMP signaling in human and murine CFs, preventing proliferative and promigratory effects of AngiotensinII (AngII) and TGF-β. Fibroblast-specific GC-B-KO mice showed enhanced fibrosis in response to AngII infusions. Moreover, after two weeks of mild pressure-overload induced by transverse aortic constriction (TAC), such KO mice had augmented cardiac fibrosis and hypertrophy, together with systolic and diastolic contractile dysfunction. This was associated with increased expression of the profibrotic genes collagen I, III and periostin. Notably, such responses to AngII and TAC were greater in female as compared to male KO mice. Enhanced AngII-induced CNP expression in female hearts and augmented GC-B expression and activity in female CFs may contribute to this sex disparity.The results show that paracrine CNP signaling in CFs has antifibrotic and antihypertrophic effects. The CNP/GC-B/cGMP pathway might be a target for therapies combating pathological cardiac remodeling

    MicroRNA Expression Profiling Identifies Activated B Cell Status in Chronic Lymphocytic Leukemia Cells

    Get PDF
    Chronic lymphocytic leukemia (CLL) is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA) expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA) identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70+ and IgVH unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL

    Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice

    Get PDF
    Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage
    • …
    corecore