2 research outputs found

    Charge Variant Analysis of Monoclonal Antibodies Using Direct Coupled pH Gradient Cation Exchange Chromatography to High-Resolution Native Mass Spectrometry

    No full text
    Charge variant analysis (CVA) of monoclonal antibodies (mAbs) using cation exchange chromatography is routinely used as a fingerprint of the distribution of posttranslational modifications present on the molecule. Traditional salt or pH based eluents are not suited for direct coupling to mass spectrometry due to nonvolatility or high ionic strength. This makes further analysis complicated when an alteration in the charge variant profile or the emergence of an additional peak is encountered. Here, the use of pH gradient elution using volatile, low ionic strength buffers is reported with direct coupling to high-resolution Orbitrap mass spectrometry. The development of a universal method based on pH elution was explored using a number of mAb drug products. Optimized methods facilitated the separation and identification of charge variants including individual glycoforms of the mAbs investigated using the same buffer system but with tailored gradient slopes. The developed method represents an exciting advance for the characterization of biopharmaceuticals as intact entities through the combination of native charge variant separations with high-resolution native mass spectrometry

    Cysteine-SILAC Mass Spectrometry Enabling the Identification and Quantitation of Scrambled Interchain Disulfide Bonds: Preservation of Native Heavy-Light Chain Pairing in Bispecific IgGs Generated by Controlled Fab-arm Exchange

    No full text
    Bispecific antibodies (bsAbs) are one of the most versatile and promising pharmaceutical innovations for countering heterogeneous and refractory disease by virtue of their ability to bind two distinct antigens. One critical quality attribute of bsAb formation requiring investigation is the potential randomization of cognate heavy (H) chain/light (L) chain pairing, which could occur to a varying extent dependent on bsAb format and the production platform. To assess the content of such HL-chain swapped reaction products with high sensitivity, we developed cysteine-stable isotope labeling using amino acids in cell culture (SILAC), a method that facilitates the detailed characterization of disulfide-bridged peptides by mass spectrometry. For this analysis, an antibody was metabolically labeled with <sup>13</sup>C<sub>3</sub>,<sup>15</sup>N-cysteine and incorporated into a comprehensive panel of distinct bispecific molecules by controlled Fab-arm exchange (DuoBody technology). This technology is a postproduction method for the generation of bispecific therapeutic IgGs of which several have progressed into the clinic. Herein, two parental antibodies, each containing a single heavy chain domain mutation, are mixed and subjected to controlled reducing conditions during which they exchange heavy–light (HL) chain pairs to form bsAbs. Subsequently, reductant is removed and all disulfide bridges are reoxidized to reform covalent inter- and intrachain bonds. We conducted a multilevel (Top-Middle-Bottom-Up) approach focusing on the characterization of both “left-arm” and “right-arm” HL interchain disulfide peptides and observed that native HL pairing was preserved in the whole panel of bsAbs produced by controlled Fab-arm exchange
    corecore