2 research outputs found

    Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope

    No full text
    In the last decade, trends for competing electrocatalytic processes have been largely captured by volcano plots, which can be constructed by the analysis of adsorption free energies as derived from electronic structure theory in the density functional theory approximation. One prototypical example refers to the four-electron and two-electron oxygen reduction reactions (ORRs), resulting in the formation of water and hydrogen peroxide, respectively. The conventional thermodynamic volcano curve illustrates that the four-electron and two-electron ORRs reveal the same slopes at the volcano legs. This finding is related to two facts, namely, that only a single mechanistic description is considered in the model, and electrocatalytic activity is assessed by the concept of the limiting potential, a simple thermodynamic descriptor evaluated at the equilibrium potential. In the present contribution, the selectivity challenge of the four-electron and two-electron ORRs is analyzed, thereby accounting for two major expansions. First, different reaction mechanisms are included into the analysis, and second, Gmax(U), a potential-dependent activity measure that factors overpotential and kinetic effects into the evaluation of adsorption free energies, is applied for approximation of electrocatalytic activity. It is illustrated that the slope of the four-electron ORR is not constant at the volcano legs but rather is prone to change as soon as another mechanistic pathway is energetically preferred or another elementary step becomes the limiting one. Due to the varying slope of the four-electron ORR volcano, a trade-off between activity and selectivity for hydrogen peroxide formation is observed. It is demonstrated that the two-electron ORR is energetically preferred at the left and right volcano legs, thus opening a new strategy for the selective formation of H2O2 by an environmentally benign route

    Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO<sub>2</sub>(110) Model Electrodes

    No full text
    Ultrathin single-crystalline RuO<sub>2</sub>(110) films supported on Ru(0001) are employed as model electrodes to extract kinetic information about the industrially important chlorine evolution reaction (CER) in a 5M concentrated NaCl solution under well-defined electrochemical conditions and variable temperatures. A combination of chronoamperometry (CA) and online electrochemical mass spectrometry (OLEMS) experiments provides insight into the selectivity issue: At pH = 0.9, the CER dominates over oxygen evolution, whereas at pH = 3.5, oxygen evolution and other parasitic side reactions contribute mostly to the total current density. From temperature-dependent CA data for pH = 0.9, we determine the apparent free activation energy of the CER over RuO<sub>2</sub>(110) to be 0.91 eV, which compares reasonably well with the theoretical value of 0.79 eV derived from first-principles microkinetics. The experimentally determined apparent free activation energy of 0.91 eV is considered as a benchmark for assessing future improved theoretical modeling from first principles
    corecore