25 research outputs found
Optimization of disassembly strategies for electric vehicle batteries
Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs
Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold
Compton scattering is one of the fundamental interaction processes of light
with matter. Already upon its discovery [1] it was described as a billiard-type
collision of a photon kicking a quasi-free electron. With decreasing photon
energy, the maximum possible momentum transfer becomes so small that the
corresponding energy falls below the binding energy of the electron. Then
ionization by Compton scattering becomes an intriguing quantum phenomenon. Here
we report a kinematically complete experiment on Compton scattering at helium
atoms below that threshold. We determine the momentum correlations of the
electron, the recoiling ion, and the scattered photon in a coincidence
experiment finding that electrons are not only emitted in the direction of the
momentum transfer, but that there is a second peak of ejection to the backward
direction. This finding links Compton scattering to processes as ionization by
ultrashort optical pulses [2], electron impact ionization [3,4], ion impact
ionization [5,6], and neutron scattering [7] where similar momentum patterns
occur.Comment: 7 pages, 4 figure
Optimization of Disassembly Strategies for Electric Vehicle Batteries
Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs