3,722 research outputs found
The feasibility study and evaluation of applying expert system techniques to the mission operations for the AXAF-I spacecraft
Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) is a spacecraft for X-ray emitting sources observation and has been tentatively scheduled for a space shuttle launch in late 1998 at the Kennedy Space Center. Its main objectives are 'to determine the nature of astronomical objects ranging from normal stars to quasars, to understand the nature of the physical processes which take place in and between astronomical objects, and to add to our understanding of the history and evolution of the universe.' The AXAF-I will have an expected five year life time for the science mission phase. During the science mission phase, the monitoring and management operation of the flight and ground systems is personnel intensive, requiring system experts on duty around the clock. The purpose of the expert system presented in this report is intended to reduce the level of expertise, training, and personnel requirement for the mission operation. The telemetry data from the spacecraft can be divided into two categories: the science observation data and the engineering status data. The science data contains the outputs from the X-ray sensing devices and will be forwarded to the AXAF-I Science Center for interpretation; while the engineering status data will be monitored by the Operation Control Center (OCC) for the operation diagnosis of the spacecraft. The expert system is designed to assist the operation controllers at the OCC to perform the daily mission operations. Since there are hundreds of engineering telemetry data points and the interpretation of the telemetry depends on many factors, e.g., sun or eclipse, the monitoring of the AXAF-I is not a trivial task. In this phase of expert system development, the focus has been limited to the engineering data interpretation, i.e., warnings will be provided to the operation controllers to signal any anomaly. The system is hosted in a Silicon Graphics Indigo-2 workstation running the IRIX operating system. The expert system tool used is the G2 system from Gensym (Gensy)
Resonant Tunneling through S- and U-shaped Graphene Nanoribbons
We theoretically investigate resonant tunneling through S- and U-shaped
nanostructured graphene nanoribbons. A rich structure of resonant tunneling
peaks are found eminating from different quasi-bound states in the middle
region. The tunneling current can be turned on and off by varying the Fermi
energy. Tunability of resonant tunneling is realized by changing the width of
the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure
Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene
We demonstrate theoretically how local strains in graphene can be tailored to
generate a valley polarized current. By suitable engineering of local strain
profiles, we find that electrons in opposite valleys (K or K') show different
Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with
light propagating behavior. In a strain-induced waveguide, electrons in K and
K' valleys have different group velocities, which can be used to construct a
valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure
Quantum tunneling through planar p-n junctions in HgTe quantum wells
We demonstrate that a p-n junction created electrically in HgTe quantum wells
with inverted band-structure exhibits interesting intraband and interband
tunneling processes. We find a perfect intraband transmission for electrons
injected perpendicularly to the interface of the p-n junction. The opacity and
transparency of electrons through the p-n junction can be tuned by changing the
incidence angle, the Fermi energy and the strength of the Rashba spin-orbit
interaction. The occurrence of a conductance plateau due to the formation of
topological edge states in a quasi-one-dimensional p-n junction can be switched
on and off by tuning the gate voltage. The spin orientation can be
substantially rotated when the samples exhibit a moderately strong Rashba
spin-orbit interaction.Comment: 4 pages, 4 figure
Automated unit-level testing with heuristic rules
Software testing plays a significant role in the development of complex software systems. Current testing methods generally require significant effort to generate meaningful test cases. The QUEST/Ada system is a prototype system designed using CLIPS to experiment with expert system based test case generation. The prototype is designed to test for condition coverage, and attempts to generate test cases to cover all feasible branches contained in an Ada program. This paper reports on heuristics sued by the system. These heuristics vary according to the amount of knowledge obtained by preprocessing and execution of the boolean conditions in the program
Topological phase transition in a narrow bandgap semiconductor nanolayer
Narrow bandgap semiconductor nanostructures have been explored for
realization of topological superconducting quantum devices in which Majorana
states can be created and employed for constructing topological qubits.
However, a prerequisite to achieve the topological phase transition in these
nanostructures is application of a magnetic field, which could complicate the
technology development towards topological quantum computing. Here we
demonstrate that a topological phase transition can be achieved in a narrow
bandgap semiconductor nanolayer under application of a perpendicular electric
field. Based on full band structure calculations, it is shown that the
topological phase transition occurs at an electric-field induced band inversion
and is accompanied by a sharp change of the invariant at the
critical field. We also demonstrate that the nontrivial topological phase is
manifested by the quantum spin Hall edge states in a band-inverted nanolayer
Hall-bar structure. We present the phase diagram of the nanolayer in the space
of layer thickness and electric field strength, and discuss the optimal
conditions to achieve a large topological bandgap in the electric-field induced
topological phase of a semiconductor nanolayer.Comment: 6 pages, 5 figure
Ecological Validity of Don\u27t Remember and Don\u27t Know For Distinguishing Accessibility-Versus Availability-Based Retrieval Failures In Older and Younger Adults: Knowledge For News Events
With pursuit of incremental progress and generalizability of findings in mind, we examined a possible boundary for older and younger adults’ metacognitive distinction between what is not stored in memory versus merely inaccessible with materials that are not process pure to knowledge or events: information regarding news events. Participants were asked questions about public events such as celebrity news, tragedies, and political events that were widely experienced in the previous 10–12 years, responding “I don’t know” (DK) or “I don’t remember” (DR) when retrieval failed. Memories of these events are relatively recently acquired in rich, naturalistic contexts and are likely not fully separated from episodic details. When retrieval failed, DR items were recognized with higher accuracy than DK items, both immediately and 2 years later, confirming that self-reported not remembering reflects failures of accessibility, whereas not knowing better captures a lack of availability. In fact, older adults distinguished between the causes of retrieval failures more precisely than younger adults. Together, these findings advance the reliability, validity, and generalizability of using DR and DK as a metacognitive tool to address the phenomenological experience and behavioral consequences of retrieval failures of information that contains both semantic and episodic features. Implications for metacognition in aging and related constructs like familiarity, remembering, and knowing are discussed
Interplay between s-d exchange interaction and Rashba effect: spin-polarized transport
We investigate the spin-polarized transport properties of a two-dimensional
electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well
subjected to a perpendicular magnetic and electric field. Interesting beating
patterns in the magneto resistance are found which can be tuned significantly
by varying the electric field. A resonant enhancement of spin-polarized current
is found which is induced by the competition between the s-d exchange
interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C
17, 6039 (1984)].Comment: 4 pages, 3 figures, Appl. Phys. Lett. (in press
- …