15,977 research outputs found

    Supernova Remnant in a Stratified Medium: Explicit, Analytical Approximations for Adiabatic Expansion and Radiative Cooling

    Get PDF
    We propose simple, explicit, analytical approximations for the kinematics of an adiabatic blast wave propagating in an exponentially stratified ambient medium, and for the onset of radiative cooling, which ends the adiabatic era. Our method, based on the Kompaneets implicit solution and the Kahn approximation for the radiative cooling coefficient, gives straightforward estimates for the size, expansion velocity, and progression of cooling times over the surface, when applied to supernova remnants (SNRs). The remnant shape is remarkably close to spherical for moderate density gradients, but even a small gradient in ambient density causes the cooling time to vary substantially over the remnant's surface, so that for a considerable period there will be a cold dense expanding shell covering only a part of the remnant. Our approximation provides an effective tool for identifying the approximate parameters when planning 2-dimensional numerical models of SNRs, the example of W44 being given in a subsequent paper.Comment: ApJ accepted, 11 pages, 2 figures embedded, aas style with ecmatex.sty and lscape.sty package

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    FEASIBILITY OF AN OKLAHOMA FRESH GREENS AND COWPEAS PACKING COOPERATIVE

    Get PDF
    Oklahoma's green producers are not benefiting from a growing fresh market. In order to seize the opportunities offered by the growing fresh market for leafy greens, investment in packing facilities have been evaluated. To make use of these facilities during summer months, the addition of a cowpea shelling enterprise is considered. A business plan for a new generation cooperative is estimated using an updated version of "The Packing Simulation Model" (PACKSIM) The business associates PACKSIM with @RISK®, to incorporate risks in the financial analysis.Agribusiness,

    Performance Analysis of the Spaceborne Laser Ranging System

    Get PDF
    The 'spaceborne laser ranging system' is a proposed short pulse laser on board an orbiting spacecraft. It measures the distances between the spacecraft and many laser retroreflectors (targets) deployed on the earth's surface. The precision of these range measurements was assumed to be about plus or minus 2 cm. These measurements were then used together with the orbital dynamics of the spacecraft to derive the intersite vector between the laser ground targets. The errors associated with this vector were on the order of 1 to 2 cm. The baseline distances determined range from 25 km to 1200 km. By repeating the measurements of the intersite vector, strain and strain rate errors were estimated. The realizable precision for intersite distance determination was estimated to be on the order of 0.5 cm at 300 km and about 1.5 cm at 1200 km. The corresponding inaccuracies for the intersite distances were larger, than is 1 cm and 3.5 cm respectively. The corresponding precision in the vertical direction was 1 cm and 3 cm

    Introduction

    Get PDF
    This volume of the Economic Policy Review, "Special issue on the economic effects of September 11," explores some of the key economic consequences of the attacks of September 11. The six articles that make up the volume address several important questions: how great were the losses in New York City on September 11 and in the difficult months thereafter? How much will the nation spend to prevent future attacks? Did the destruction of information and infrastructure impair the functioning of the payments and securities settlement systems, and what steps minimize further damage? Will these events hurt New York's future vitality and cause businesses and workers to retreat from the city? ; The six articles fall into three broad groups: 1) detailed accountings of economic costs--those incurred as a direct consequence of the September 11 attacks and those arising from efforts to prevent future attacks, 2) studies of the attacks' disruptive effects on the payments and securities settlement systems, and 3) analyses of New York City's prospects after September 11.Disaster relief ; Terrorism ; War - Economic aspects ; Economic conditions - New York (N.Y.) ; Federal Reserve District, 2nd

    Low-Temperature Properties of Quasi-One-Dimensional Molecule-Based Ferromagnets

    Full text link
    Quantum and thermal behaviors of low-dimensional mixed-spin systems are investigated with particular emphasis on the design of molecule-based ferromagnets. One can obtain a molecular ferromagnet by assembling molecular bricks so as to construct a low-dimensional system with a magnetic ground state and then coupling the chains or the layers again in a ferromagnetic fashion. Two of thus-constructed quasi-one-dimensional bimetallic compounds are qualitatively viewed within the spin-wave treatment, one of which successfully grows into a bulk magnet, while the other of which ends in a singlet ground state. Then, concentrating on the ferrimagnetic arrangement on a two-leg ladder which is well indicative of general coupled-chain ferrimagnets, we develop the spin-wave theory and fully reveal its low-energy structure. We inquire further into the ferromagnetic aspect of the ferrimagnetic ladder numerically calculating the sublattice magnetization and the magnetic susceptibility. There exists a moderate coupling strength between the chains in order to obtain the most ferromagnetic ferrimagnet.Comment: 10 pages, 7 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001

    Evidence of environmental strains on charge injection in silole based organic light emitting diodes

    Full text link
    Using d. functional theory (DFT) computations, the authors demonstrated a substantial skeletal relaxation when the structure of 2,5-bis-[4-anthracene-9-yl-phenyl]-1,1-dimethyl-3,4-diphenyl-silole (BAS) is optimized in the gas-phase comparing with the mol. structure detd. from monocrystal x-ray diffraction. The origin of such a relaxation is explained by a strong environmental strains induced by the presence of anthracene entities. Also, the estn. of the frontier orbital levels showed that this structural relaxation affects mainly the LUMO that is lowered of 190 meV in the gas phase. To check if these theor. findings would be confirmed for thin films of BAS, the authors turned to UV photoemission spectroscopy and/or inverse photoemission spectroscopy and electrooptical measurements. The study of the c.d. or voltage and luminance or voltage characteristics of an ITO/PEDOT/BAS/Au device clearly demonstrated a very unusual temp.-dependent behavior. Using a thermally assisted tunnel transfer model, this behavior likely originated from the variation of the electronic affinity of the silole deriv. with the temp. The thermal agitation relaxes the mol. strains in thin films as it is shown when passing from the cryst. to the gas phase. The relaxation of the intramol. thus induces an increase of the electronic affinity and, as a consequence, the more efficient electron injection in org. light-emitting diodes
    corecore