156 research outputs found

    Network constraints on learnability of probabilistic motor sequences

    Full text link
    Human learners are adept at grasping the complex relationships underlying incoming sequential input. In the present work, we formalize complex relationships as graph structures derived from temporal associations in motor sequences. Next, we explore the extent to which learners are sensitive to key variations in the topological properties inherent to those graph structures. Participants performed a probabilistic motor sequence task in which the order of button presses was determined by the traversal of graphs with modular, lattice-like, or random organization. Graph nodes each represented a unique button press and edges represented a transition between button presses. Results indicate that learning, indexed here by participants' response times, was strongly mediated by the graph's meso-scale organization, with modular graphs being associated with shorter response times than random and lattice graphs. Moreover, variations in a node's number of connections (degree) and a node's role in mediating long-distance communication (betweenness centrality) impacted graph learning, even after accounting for level of practice on that node. These results demonstrate that the graph architecture underlying temporal sequences of stimuli fundamentally constrains learning, and moreover that tools from network science provide a valuable framework for assessing how learners encode complex, temporally structured information.Comment: 29 pages, 4 figure

    Structure from noise: Mental errors yield abstract representations of events

    Full text link
    Humans are adept at uncovering abstract associations in the world around them, yet the underlying mechanisms remain poorly understood. Intuitively, learning the higher-order structure of statistical relationships should involve complex mental processes. Here we propose an alternative perspective: that higher-order associations instead arise from natural errors in learning and memory. Combining ideas from information theory and reinforcement learning, we derive a maximum entropy (or minimum complexity) model of people's internal representations of the transitions between stimuli. Importantly, our model (i) affords a concise analytic form, (ii) qualitatively explains the effects of transition network structure on human expectations, and (iii) quantitatively predicts human reaction times in probabilistic sequential motor tasks. Together, these results suggest that mental errors influence our abstract representations of the world in significant and predictable ways, with direct implications for the study and design of optimally learnable information sources.Comment: 62 pages, 7 figures, 10 table

    Individual Differences in Learning Social and Non-Social Network Structures

    Get PDF
    How do people acquire knowledge about which individuals belong to different cliques or communities? And to what extent does this learning process differ from the process of learning higher-order information about complex associations between non-social bits of information? Here, we employ a paradigm in which the order of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex network. We examined individual differences in the ability to learn community structure of networks composed of social versus non-social stimuli. Although participants were able to learn community structure of both social and non-social networks, their performance in social network learning was uncorrelated with their performance in non-social network learning. In addition, social traits, including social orientation and perspective-taking, uniquely predicted the learning of social community structure but not the learning of non-social community structure. Taken together, our results suggest that the process of learning higher-order community structure in social networks is partially distinct from the process of learning higher-order community structure in non-social networks. Our study design provides a promising approach to identify neurophysiological drivers of social network versus non-social network learning, extending our knowledge about the impact of individual differences on these learning processes

    Controllability of structural brain networks.

    Get PDF
    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function
    • …
    corecore