23 research outputs found

    Human and Murine Evidence for Mechanisms Driving Autoimmune Photosensitivity

    Get PDF
    Ultraviolet (UV) light is an important environmental trigger for systemic lupus erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease are not fully known. This review covers evidence in both human and murine systems for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine production, inflammatory cell recruitment, and systemic flare induction. In addition, the role of the circadian clock is discussed. Evidence is compared in healthy individuals and SLE patients as well as in wild-type and lupus-prone mice. Further research is needed into the effects of UV light on cutaneous and systemic immune responses to understand how to prevent UV-light mediated lupus flares

    Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1

    Get PDF
    Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1β and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death

    Why male orangutans do not kill infants

    Get PDF
    Infanticide is widespread among mammals, is particularly common in primates, and has been shown to be an adaptive male strategy under certain conditions. Although no infanticides in wild orangutans have been reported to date, several authors have suggested that infanticide has been an important selection pressure influencing orangutan behavior and the evolution of orangutan social systems. In this paper, we critically assess this suggestion. We begin by investigating whether wild orangutans have been studied for a sufficiently long period that we might reasonably expect to have detected infanticide if it occurs. We consider whether orangutan females exhibit counterstrategies typically employed by other mammalian females. We also assess the hypothesis that orangutan females form special bonds with particular “protector males” to guard against infanticide. Lastly, we discuss socioecological reasons why orangutan males may not benefit from infanticide. We conclude that there is limited evidence for female counterstrategies and little support for the protector male hypothesis. Aspects of orangutan paternity certainty, lactational amenorrhea, and ranging behavior may explain why infanticide is not a strategy regularly employed by orangutan males on Sumatra or Borneo
    corecore