7 research outputs found

    B Lymphocytes of Xeroderma Pigmentosum or Cockayne Syndrome Patients with Inherited Defects in Nucleotide Excision Repair Are Fully Capable of Somatic Hypermutation of Immunoglobulin Genes

    Get PDF
    Recent experiments have strongly suggested that the process of somatic mutation is linked to transcription initiation. It was postulated that a mutator factor loads onto the RNA polymerase and, during elongation, causes transcriptional arrest that activates DNA repair, thus occasionally causing errors in the DNA sequence. We report the analysis of the role of one of the known DNA repair systems, nucleotide excision repair (NER), in somatic mutation. Epstein–Barrvirus-transformed B cells from patients with defects in NER (XP-B, XP-D, XP-V, and CS-A) were studied. Their heavy and light chain genes show a high frequency of point mutations in the variable (V), but not in the constant (C) regions. This suggests that these B cells can undergo somatic hypermutation despite significant defects in NER. Thus, it is doubtful that NER is an essential part of the mechanism of somatic hypermutation of Ig genes. As an aside, NER seems also not involved in Ig gene switch recombination

    Abstract 5479: Redox stress as a therapeutic Achilles heel in castration-resistant prostate cancer

    No full text
    Abstract Androgen deprivation therapy (ADT) initially suppresses prostate cancer (PC) progression. However, castration resistant PC (CRPC) cells inevitably emerge, resulting in incurable disease. We recently demonstrated that AD produces a form of cellular senescence leading to outgrowth of CRPC subpopulations from the AD-sensitive parental cells. Gene expression profiling studies comparing the parental LNCaP line to the senescence-resistant, early CRPC variant, LNCaP SB5, revealed an enrichment of thiol-based redox-protective proteins in the latter under AD conditions. This finding suggests that redox stress due to hyperactivated mitogenic/survival signaling or metabolic stresses may be an important and understudied Achilles heel in the progression to CRPC. Here we present the effects of inhibiting thioredoxin-1 (TRX1), a redox-protective protein that was identified as being elevated in our early CRPC LNCaP SB5 model. Suppression of TRX1 expression via shRNA led to profound growth suppression of CRPC cells, relative to their AD-sensitive counterparts, and significantly reduced CRPC xenograft tumor growth. Furthermore, under AD, TRX1 suppression promoted p53-induced cell death, which was accompanied by increased reactive oxygen species (ROS). These in vitro and in vivo results were recapitulated using a Phase II clinical trial-tested chemical TRX1 inhibitor. Thus our results point to TRX1 as a critical requirement for CRPC progression and provide a rationale for using TRX1 inhibitors in conjunction with ADT to limit CRPC. Citation Format: Clara I. Troccoli, Govindi J. Samaranayake, Mai Q. Huynh, Karen Kage, Deukwoo Kwon, Yuguang Ban, Xi S. Chen, Enrique R. Zarco, Merce Jorda, Kerry L. Burnstein, Priyamvada Rai. Redox stress as a therapeutic Achilles heel in castration-resistant prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5479. doi:10.1158/1538-7445.AM2017-5479</jats:p

    A new quantitative method for gunshot residue analysis by ion beam analysis

    No full text
    Imaging and analyzing gunshot residue (GSR) particles using the scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDS) is a standard technique that can provide important forensic evidence, but the discrimination power of this technique is limited due to low sensitivity to trace elements and difficulties in obtaining quantitative results from small particles. A new, faster method using a scanning proton microbeam and Particle Induced X-ray Emission (μ-PIXE), together with Elastic Backscattering Spectrometry (EBS) is presented for the non-destructive, quantitative analysis of the elemental composition of single GSR particles. In this study, the GSR particles were all Pb, Ba, Sb. The precision of the method is assessed. The grouping behaviour of different makes of ammunition is determined using multivariate analysis. The protocol correctly groups the cartridges studied here, with a confidence >99%, irrespective of the firearm or population of particles selected
    corecore