1,881 research outputs found

    Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    We investigated the magnetism under a magnetic field in the quasi-two-dimensional organic Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl through magnetization and 13^{13}C-NMR measurements. We found that in the nominally paramagnetic phase (i.e., above N\'eel temperature) the field-induced local moments have a staggered component perpendicular to the applied field. As a result, the antiferromagnetic transition well defined at a zero field becomes crossover under a finite field. This unconventional behavior is qualitatively reproduced by the molecular-field calculation for Hamiltonian including the exchange, Dzyaloshinsky-Moriya (DM), and Zeeman interactions. This calculation also explains other unconventional magnetic features in κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl reported in the literature. The present results highlight the importance of the DM interaction in field-induced magnetism in a nominally paramagnetic phase, especially in low-dimensional spin systems.Comment: 11 pages, 12 figures, selected for Editors' Suggestion

    The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture

    Get PDF
    The eel has long been esteemed as an important food fish in the world, especially in Japan, and has been used as an experimental fish for many fields of fish physiology. However, the decreases in eel resources have been a serious concern in recent years. The catches of glass eels as seedlings for aquaculture have shown a long-term decrease in both Europe and East Asia. To increase eel resources, the development of techniques for artificial induction of maturation and spawning and rearing their larvae have been eagerly desired. Recent progress of reproductive physiology of fish, especially mechanisms of oocyte maturation and ovulation in female and of spermatozoa maturation in male, facilitate to establish techniques for hormonal induction of maturation and spawning in sexually immature eels. With persistent effort to development of rearing techniques of larvae, we have first succeeded to produce glass eel. These applied techniques are may contribute to understand the basic reproductive physiology of the eel

    Energetic perspective on emergent inductance exhibited by magnetic textures in the pinned regime

    Get PDF
    Spatially varying magnetic textures can exhibit electric-current-induced dynamics as a result of the spin-transfer torque effect. When such a magnetic system is electrically driven, an electric field is generated, which is called the emergent electric field. In particular, when magnetic-texture dynamics are induced under the application of an AC electric current, the emergent electric field also appears in an AC manner, notably, with an out-of-phase time profile, thus exhibiting inductor behaviour, often called an emergent inductor. Here we show that the emergent inductance exhibited by magnetic textures in the pinned regime can be explained in terms of the current-induced energy stored in the magnetic system. We numerically find that the inductance values defined from the emergent electric field and the current-induced magnetization-distortion energy, respectively, are in quantitative agreement in the so-called adiabatic limit. Our findings indicate that emergent inductors retain the basic concept of conventional inductors; that is, the energy is stored under the application of electric current

    Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    An organic Mott insulator, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the resistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, ∣1R∂R∂P∣|\frac{1}{R}\frac{\partial R}{\partial P}|, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.Comment: 4 pages, 5 figure

    Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface

    Full text link
    Molecular dynamics simulations of single water, water-methanol, or water-IPA (isopropyl-alcohol) mixture droplets on a solid surface were performed with various mixture ratios. An increase in alcohol fraction generally gave an increase in droplet wettability. Both methanol and IPA molecules showed a strong preference to gather at various interfaces, with methanol molecules also showing a tendency to diffuse into the droplet bulk. Specific interfacial tensions were investigated using quasi-one-dimensional simulation systems, and liquid-vapor and solid-liquid interfacial tensions were found to decrease greatly due to the presence of interfacial alcohol, while solid-vapor interfacial tensions were proved to have little influence on wettability. Young's relation was found to hold quantitatively well for both water-methanol and water-IPA droplets. The validity of using Bakker's equation on solid-liquid interfaces was also investigated, and it was shown that for tightly spaced crystal surfaces, the introduced uncertainly is small.D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima, and H. Fujimura, "Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface", The Journal of Chemical Physics 140, 034505 (2014) https://doi.org/10.1063/1.4861039

    Strongly pinned skyrmionic bubbles and higher-order nonlinear Hall resistances at the interface of Pt/FeSi bilayer

    Full text link
    Engineering of magnetic heterostructures for spintronic applications has entered a new phase, driven by the recent discoveries of topological materials and exfoliated van der Waals materials. Their low-dimensional properties can be dramatically modulated in designer heterostructures via proximity effects from adjacent materials, thus enabling the realization of diverse quantum states and functionalities. Here we investigate spin-orbit coupling (SOC) proximity effects of Pt on the recently discovered quasi-two-dimensional ferromagnetic state at FeSi surface. Skyrmionic bubbles (SkBs) are formed as a result of the enhanced interfacial Dzyloshinskii-Moriya interaction. The strong pinning effects on the SkBs are evidenced from the significant dispersion in size and shape of the SkBs and are further identified as a greatly enhanced threshold current density required for depinning of the SkBs. The robust integrity of the SkB assembly leads to the emergence of higher-order nonlinear Hall effects in the high current density regime, which originate from nontrivial Hall effects due to the noncollinearity of the spin texture, as well as from the current-induced magnetization dynamics via the augmented spin-orbit torque.Comment: 4 figure
    • …
    corecore