11,225 research outputs found

    Probing New Physics From CP Violation in Radiative B Decays

    Get PDF
    When new CP-violating interactions are dominated by flavor changing neutral particle exchanges, that may occur in many extensions of the standard model. We examine a type 3 two Higgs doublet model and find that direct CP asymmetries can be as large as about 25% . Time-dependent and time-integrated mixing-induced CP asymmetries up to 85 and 40 %, respectively, are possible without conflict with other constraints. It mainly requirs an enhanced chromo-magnetic dipole bsgb\to sg decay to be close to the present experimental bound.Comment: 7 pages, latex, no figure

    Calculation of the microcanonical temperature for the classical Bose field

    Full text link
    The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to non-perturbative many-body effects.Comment: revtex4, 10 pages, 1 figure. v2: updated to published version. Fuller discussion of numerical results, correction of some minor error

    Expansion of an interacting Fermi gas

    Full text link
    We study the expansion of a dilute ultracold sample of fermions initially trapped in a anisotropic harmonic trap. The expansion of the cloud provides valuable information about the state of the system and the role of interactions. In particular the time evolution of the deformation of the expanding cloud behaves quite differently depending on whether the system is in the normal or in the superfluid phase. For the superfluid phase, we predict an inversion of the deformation of the sample, similarly to what happens with Bose-Einstein condensates. Viceversa, in the normal phase, the inversion of the aspect ratio is never achieved, if the mean field interaction is attractive and collisions are negligible.Comment: 4 pages, 3 figures, final versio

    The top squark-mediated annihilation scenario and direct detection of dark matter in compressed supersymmetry

    Full text link
    Top squark-mediated annihilation of bino-like neutralinos to top-antitop pairs can play the dominant role in obtaining a thermal relic dark matter abundance in agreement with observations. In a previous paper, it was argued that this can occur naturally in models of compressed supersymmetry, which feature a running gluino mass parameter that is substantially smaller than the wino mass parameter at the scale of apparent gauge coupling unification. Here I study in some more detail the parameter space in which this is viable, and compare to other scenarios for obtaining the observed dark matter density. I then study the possibility of detecting the dark matter directly in future experiments. The prospects are consistently very promising for a wide variety of model parameters within this scenario.Comment: 17 pages. v2: additions to figures 4 and

    Possible Quantum Diffusion of Polaronic Muons in Dy2_2Ti2_2O7_7 Spin Ice

    Full text link
    We interpret recent measurements of the zero field muon relaxation rate in the frustrated magnetic pyrochlore Dy2_2Ti2_2O7_7 as resulting from the quantum diffusion of muons in the substance. In this scenario, the plateau observed at low temperature (<7<7 K) in the relaxation rate is due to coherent tunneling of the muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T=50T^* = 50 K correspond to a crossover between tunnelling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.Comment: 15 pages, 2 figure

    Quantum Glassiness

    Full text link
    Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. This paper presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.Comment: 4 page

    Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose-Einstein condensates

    Full text link
    We study transverse radial oscillations of an elongated Bose-Einstein condensate using finite temperature simulations, in the context of a recent experiment at ENS. We demonstrate the existence of a mode corresponding to an in-phase collective oscillation of both the condensate and thermal cloud. Excitation of this mode accounts for the very small damping rate observed experimentally, and we find excellent quantitative agreement between experiment and theory. In contrast to other condensate modes, interatomic collisions are found to be the dominant damping mechanism in this case.Comment: 4 pages, 3 figure

    Long-Term Clustering, Scaling, and Universality in the Temporal Occurrence of Earthquakes

    Full text link
    Scaling analysis reveals striking regularities in earthquake occurrence. The time between any one earthquake and that following it is random, but it is described by the same universal-probability distribution for any spatial region and magnitude range considered. When time is expressed in rescaled units, set by the averaged seismic activity, the self-similar nature of the process becomes apparent. The form of the probability distribution reveals that earthquakes tend to cluster in time, beyond the duration of aftershock sequences. Furthermore, if aftershock sequences are analysed in an analogous way, yet taking into account the fact that seismic activity is not constant but decays in time, the same universal distribution is found for the rescaled time between events.Comment: short paper, only 2 figure

    "Universal" Distribution of Inter-Earthquake Times Explained

    Full text link
    We propose a simple theory for the ``universal'' scaling law previously reported for the distributions of waiting times between earthquakes. It is based on a largely used benchmark model of seismicity, which just assumes no difference in the physics of foreshocks, mainshocks and aftershocks. Our theoretical calculations provide good fits to the data and show that universality is only approximate. We conclude that the distributions of inter-event times do not reveal more information than what is already known from the Gutenberg-Richter and the Omori power laws. Our results reinforces the view that triggering of earthquakes by other earthquakes is a key physical mechanism to understand seismicity.Comment: 4 pages with two figure
    corecore