11,495 research outputs found

    Motion of a condensate in a shaken and vibrating harmonic trap

    Full text link
    The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic trapping potential is determined for arbitrary variations of the position of the center of the trap and its frequencies. The dynamics of the BEC wavepacket is soliton-like. The motion of the center of the wavepacket, and the spatially and temporally dependent phase (which affects the coherence properties of the BEC) multiplying the soliton-like part of the wavepacket, are analytically determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy

    Expansion of an interacting Fermi gas

    Full text link
    We study the expansion of a dilute ultracold sample of fermions initially trapped in a anisotropic harmonic trap. The expansion of the cloud provides valuable information about the state of the system and the role of interactions. In particular the time evolution of the deformation of the expanding cloud behaves quite differently depending on whether the system is in the normal or in the superfluid phase. For the superfluid phase, we predict an inversion of the deformation of the sample, similarly to what happens with Bose-Einstein condensates. Viceversa, in the normal phase, the inversion of the aspect ratio is never achieved, if the mean field interaction is attractive and collisions are negligible.Comment: 4 pages, 3 figures, final versio

    Superconductivity from repulsive interactions in the two dimensional electron gas

    Full text link
    We present a well-controlled perturbative renormalization group (RG) treatment of superconductivity from short-ranged repulsive interactions in a variety of model two dimensional electronic systems. Our analysis applies in the limit where the repulsive interactions between the electrons are small compared to their kinetic energy.Comment: 10 pages 3 figure

    Critical Dynamics of a Two-dimensional Superfluid near a Non-Thermal Fixed Point

    Full text link
    Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately re-thermalizing, the system approaches a meta-stable transient state, characterized as a non-thermal fixed point. A focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the non-thermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the vortex-density decay are found and discussed in terms of a vortex binding-unbinding transition and a kinetic description of vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the non-thermal fixed point in a reduced phase space is developed.Comment: 11 pages, 13 figures; PRA versio

    Measurement of positive and negative scattering lengths in a Fermi gas of atoms

    Full text link
    An exotic superfluid phase has been predicted for an ultracold gas of fermionic atoms. This phase requires strong attractive interactions in the gas, or correspondingly atoms with a large, negative s-wave scattering length. Here we report on progress toward realizing this predicted superfluid phase. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms. Starting with a two-component gas that has been evaporatively cooled to quantum degeneracy, we create controllable, strong interactions between the atoms using a magnetic-field Feshbach resonance. We then employ a novel rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let
    • …
    corecore